MHB Can Harmonic Functions Agree at All Points in a Bounded Domain?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
The discussion centers on a problem involving two harmonic functions, φ₁ and φ₂, defined on a bounded domain Ω in R³. It presents a condition relating their normal derivatives on the boundary of Ω and asks to prove that φ₁ equals φ₂ throughout Ω. No participants successfully solved the problem, with a common assumption that the functions agree at some point in Ω. The original poster shares their solution, indicating that the problem's complexity may have contributed to the lack of correct answers. The thread emphasizes the importance of understanding harmonic functions and their properties in mathematical analysis.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $\phi_1$ and $\phi_2$ be harmonic functions on a bounded domain $\Omega \subset \mathbb R^3$ such that \[\phi_1 \frac{\partial \phi_1}{\partial n} + \phi_2 \frac{\partial \phi_2}{\partial n} = \phi_2 \frac{\partial \phi_1}{\partial n} + \phi_1 \frac{\partial \phi_2}{\partial n}\quad \text{on}\quad \partial \Omega\]
Prove that $\phi_1 = \phi_2$ everywhere in $\Omega$. [The operator $\frac{\partial}{\partial n}$ denotes the normal derivative on $\partial \Omega$.]

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's problem correctly, but that's ok since it was tacitly assumed that $\phi_1$ and $\phi_2$ agree at some point in $\Omega$. (Smile) You can read my solution below.

If $\phi := \phi_1 - \phi_2$, then $\phi \frac{\partial \phi}{\partial n} = 0$ on $\partial \Omega$ and $\nabla^2 \phi = 0$ in $\Omega$. By Green's formula, $$\int_\Omega \lvert \nabla \phi\rvert^2\, dx = \oint_{\partial \Omega} \phi \frac{\partial \phi}{\partial n}\, dS - \int_{\Omega} \phi \nabla^2 \phi\, dx = 0 - 0 = 0$$ Hence $\lvert \nabla \phi\rvert^2 = 0$. Since $\Omega$ is connected $\phi$ is constant. As $\phi_1$ and $\phi_2$ agree at some point in $\Omega$, $\phi$ must be zero at that point, making $\phi$ identically zero. Hence $\phi_1$ and $\phi_2$ are identical.