MHB Can the Hypergeometric Equation Prove that tan^-1x = xF(1/2, 1, 3/2, -x^2)?

  • Thread starter Thread starter ssh
  • Start date Start date
  • Tags Tags
    Hypergeometric
ssh
Messages
17
Reaction score
0
Show that,

\[\tan^{-1}x = xF\left(\frac{1}{2},\, 1,\, \frac{3}{2},\, -x^2\right)\]
 
Last edited by a moderator:
Physics news on Phys.org
ssh said:
Show that tan -1(X) = x F (1\2, 1, 3/2, -x^2)
First note that the expansion of $\arctan(x) = \sum^{\infty}_{0}\frac{(-1)^n(x)^{2n+1}}{2n+1}$ F (\frac{1}{2}, 1, \frac{3}{2}, -x^2) = 1+\frac{\frac{1}{2}\cdot 1}{\frac{3}{2}}(-x^2)+\frac{\frac{1}{2}\cdot \frac{3}{2}\cdot 1 \cdot 2}{\frac{3}{2}\cdot \frac{5}{2}\cdot 2!}(x^4)+\frac{\frac{1}{2}\cdot \frac{3}{2}\cdot \frac{5}{2}\cdot 1 \cdot 2\cdot 3}{\frac{3}{2}\cdot \frac{5}{2}\cdot\frac{7}{2}\cdot 3!}(-x^6)+... xF (\frac{1}{2}, 1, \frac{3}{2}, -x^2)= x-\frac{x^3}{3}+\frac{x^5}{5}-\frac{x^7}{7}+... =\sum^{\infty}_{n=0}\frac{(-1)^nx^{2n+1}}{2n+1} which is exactly the expansion of the arctan(x)
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top