MHB Can the improper integral involving the sine function and a polynomial converge?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
The discussion revolves around proving the convergence of the improper integral involving the sine function and a polynomial, specifically \[ \lim_{B\to\infty}\int_{0}^B \sin(x) \sin\left(x^2\right) \, dx\]. Participants reference its origin as Problem A-4 from the 2000 William Lowell Putnam Mathematical Competition. The correct solution was provided by a user named Opalg, who demonstrated the integral's convergence. The thread encourages engagement with the Problem of the Week and highlights the importance of following the guidelines for submissions. Overall, the focus remains on the mathematical proof and its implications.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Show that the improper integral
\[ \lim_{B\to\infty}\int_{0}^B \sin(x) \sin\left(x^2\right) \, dx\]
converges.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 262 - May 08, 2017

This was Problem A-4 in the 2000 William Lowell Putnam Mathematical Competition.

Congratulations to Opalg for his correct solution, which follows:

Let $A<B$. Then (integrating by parts) $$ \begin{aligned} \int_A^B \sin x \sin (x^2)\,dx &= \int_A^B \frac {\sin x}{2x} (2x\sin (x^2)) \,dx \\ &= \Bigl[ \frac {\sin x}{2x}(-\cos (x^2)) \Bigr]_A^B + \int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx \\ &= \frac{-\sin B\cos (B^2)}{2B} + \frac{\sin A\cos (A^2)}{2A} + \int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx. \end{aligned}$$ It follows from the triangle inequality that $$ \left| \int_A^B \sin x \sin (x^2)\,dx \right| \leqslant \frac1{2B} + \frac1{2A} + \left|\int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx \right|.$$ Now integrate by parts again, to get $$ \begin{aligned} \int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx &= \int_A^B \frac{x\cos x - \sin x}{4x^3}(2x\cos (x^2))\,dx \\ &= \Bigl[ \frac{x\cos x - \sin x}{4x^3}\sin(x^2)\Bigr]_A^B - \int_A^B \frac{(-x\sin x)x^3 - 3x^2(x\cos x - \sin x)}{4x^6}\sin(x^2)\,dx \\ &= \frac{B\cos B - \sin B}{4B^3} - \frac{A\cos A - \sin A}{4A^3} - \int_A^B \frac{-x^2\sin x - 3(x\cos x - \sin x)}{4x^4}\sin(x^2)\,dx. \end{aligned}$$ From the triangle inequality, $$ \begin{aligned} \left| \int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx \right| &\leqslant \frac1{2B^2} + \frac1{2A^2} + \left|\int_A^B \frac{-x^2\sin x - 3(x\cos x - \sin x)}{4x^4}\sin(x^2)\,dx \right| \\ &\leqslant \frac1{2B^2} + \frac1{2A^2} + \int_A^B \left|\frac{-x^2\sin x - 3(x\cos x - \sin x)}{4x^4}\sin(x^2)\right |\,dx \\ &\leqslant \frac1{2B^2} + \frac1{2A^2} + \int_A^B \frac{8x^2}{4x^4}\,dx \\ &= \frac1{2B^2} + \frac1{2A^2} +\left[ -2x^{-1}\right]_A^B \leqslant \frac1{2B^2} + \frac1{2A^2} + \frac1B + \frac1A .\end{aligned} $$ Put that all together to see that $$\left|\int_A^B \sin x \sin (x^2)\,dx \right| \leqslant \frac1{2B} + \frac1{2A} + \frac1{2B^2} + \frac1{2A^2} + \frac1{B} + \frac1{A} \to0 \quad \text{as }\ A,B \to\infty.$$ It follows from the Cauchy criterion that $$\lim_{B\to\infty}\int_0^B \sin x \sin (x^2)\,dx$$ converges.