Can the improper integral involving the sine function and a polynomial converge?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The improper integral \(\lim_{B\to\infty}\int_{0}^B \sin(x) \sin\left(x^2\right) \, dx\) converges, as demonstrated in the discussion. This problem, identified as Problem A-4 from the 2000 William Lowell Putnam Mathematical Competition, showcases the application of integration techniques involving oscillatory functions. The solution provided by Opalg confirms the convergence through rigorous mathematical reasoning and analysis.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with oscillatory functions and their properties
  • Knowledge of integration techniques in calculus
  • Experience with mathematical competition problems
NEXT STEPS
  • Study the convergence criteria for improper integrals
  • Explore techniques for integrating oscillatory functions
  • Review solutions to previous William Lowell Putnam Mathematical Competition problems
  • Learn about advanced integration methods, such as integration by parts and substitution
USEFUL FOR

Mathematics students, educators, and competitive problem solvers interested in advanced calculus and integration techniques.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Show that the improper integral
\[ \lim_{B\to\infty}\int_{0}^B \sin(x) \sin\left(x^2\right) \, dx\]
converges.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 262 - May 08, 2017

This was Problem A-4 in the 2000 William Lowell Putnam Mathematical Competition.

Congratulations to Opalg for his correct solution, which follows:

Let $A<B$. Then (integrating by parts) $$ \begin{aligned} \int_A^B \sin x \sin (x^2)\,dx &= \int_A^B \frac {\sin x}{2x} (2x\sin (x^2)) \,dx \\ &= \Bigl[ \frac {\sin x}{2x}(-\cos (x^2)) \Bigr]_A^B + \int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx \\ &= \frac{-\sin B\cos (B^2)}{2B} + \frac{\sin A\cos (A^2)}{2A} + \int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx. \end{aligned}$$ It follows from the triangle inequality that $$ \left| \int_A^B \sin x \sin (x^2)\,dx \right| \leqslant \frac1{2B} + \frac1{2A} + \left|\int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx \right|.$$ Now integrate by parts again, to get $$ \begin{aligned} \int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx &= \int_A^B \frac{x\cos x - \sin x}{4x^3}(2x\cos (x^2))\,dx \\ &= \Bigl[ \frac{x\cos x - \sin x}{4x^3}\sin(x^2)\Bigr]_A^B - \int_A^B \frac{(-x\sin x)x^3 - 3x^2(x\cos x - \sin x)}{4x^6}\sin(x^2)\,dx \\ &= \frac{B\cos B - \sin B}{4B^3} - \frac{A\cos A - \sin A}{4A^3} - \int_A^B \frac{-x^2\sin x - 3(x\cos x - \sin x)}{4x^4}\sin(x^2)\,dx. \end{aligned}$$ From the triangle inequality, $$ \begin{aligned} \left| \int_A^B \frac{x\cos x - \sin x}{2x^2}\cos (x^2)\,dx \right| &\leqslant \frac1{2B^2} + \frac1{2A^2} + \left|\int_A^B \frac{-x^2\sin x - 3(x\cos x - \sin x)}{4x^4}\sin(x^2)\,dx \right| \\ &\leqslant \frac1{2B^2} + \frac1{2A^2} + \int_A^B \left|\frac{-x^2\sin x - 3(x\cos x - \sin x)}{4x^4}\sin(x^2)\right |\,dx \\ &\leqslant \frac1{2B^2} + \frac1{2A^2} + \int_A^B \frac{8x^2}{4x^4}\,dx \\ &= \frac1{2B^2} + \frac1{2A^2} +\left[ -2x^{-1}\right]_A^B \leqslant \frac1{2B^2} + \frac1{2A^2} + \frac1B + \frac1A .\end{aligned} $$ Put that all together to see that $$\left|\int_A^B \sin x \sin (x^2)\,dx \right| \leqslant \frac1{2B} + \frac1{2A} + \frac1{2B^2} + \frac1{2A^2} + \frac1{B} + \frac1{A} \to0 \quad \text{as }\ A,B \to\infty.$$ It follows from the Cauchy criterion that $$\lim_{B\to\infty}\int_0^B \sin x \sin (x^2)\,dx$$ converges.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
5K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K