High School Can This Infinite Product Surpass 50?

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Is $\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{6}\right)\cdots\left(1+\dfrac{1}{2018}\right)$ greater than, less than or equal to 50?

-----

 
Physics news on Phys.org
Congratulations to Opalg for solving last POTW, which you can find his solution below!:cool:
$$\begin{aligned}\left(1+\frac12\right) \left(1+\frac14\right) \left(1+\frac16\right)\cdots \left(1+\frac1{2n}\right) &= \frac32\frac54\frac76 \cdots\frac{2n+1}{2n} \\ &= \frac{(2n+1)!}{4^n(n!)^2} = \frac{(n+1)(2n+1)}{4^n}C_n,\end{aligned}$$ where $C_n = \frac1{n+1}{2n\choose n}$ is the $n$th Catalan number. The Stirling approximation formula for $C_n$ is $C_n \sim \dfrac{4^n}{\sqrt{n^3\pi}}$, and it is accurate to within a factor of about $1/n$. Therefore $$\left(1+\frac12\right) \left(1+\frac14\right) \left(1+\frac16\right)\cdots \left(1+\frac1{2n}\right) \sim \frac{(n+1)(2n+1)}{\sqrt{n^3\pi}}.$$ Put $n = 1009$ to see that $$\left(1+\frac12\right) \left(1+\frac14\right) \left(1+\frac16\right)\cdots \left(1+\frac1{2018}\right) \sim 35.896,$$ correct to about 1 part in 1000. At any rate, it is a lot less than 50.

I will post another solution from other here too for an alternative method to solve the problem.
Let $S=\left(1+\dfrac{1}{2}\right)\left(1+\dfrac{1}{4}\right)\left(1+\dfrac{1}{6}\right)\cdots\left(1+\dfrac{1}{2018}\right)$.

Clearly the following is true:
$S<\left(1+\dfrac{1}{1}\right)\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{5}\right)\cdots\left(1+\dfrac{1}{2017}\right)$

Multiply both sides by $S$, we get

$\begin{align*}S^2&<\left(\dfrac{3}{2}\right)\left(\dfrac{5}{4}\right)\left(\dfrac{7}{6}\right)\cdots\left(\dfrac{2019}{2018}\right)\left(\dfrac{2}{1}\right)\left(\dfrac{4}{3}\right)\left(\dfrac{6}{5}\right)\cdots\left(\dfrac{2018}{2017}\right)\\&<2019\\S&<\sqrt{2019}\end{align*}$

Since $2019<2500=50^2$, we get

$S<\sqrt{2019}<50$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K