Can this perturbation problem be solved using a multi-scale approach?

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Perturbation
Click For Summary
SUMMARY

The discussion focuses on solving the perturbation problem described by the equation $$\frac{d^2x}{dt^2} + x + \epsilon\frac{dx}{dt}\left[1 - \left(\frac{dx}{dt}\right)^2 + \beta\left(\frac{dx}{dt}\right)^4\right] = 0$$ using a multi-scale approach. Participants suggest reducing the order of the perturbation expansion to order 2 or utilizing Maple software for simplification. The critical value of beta is identified as $\frac{9}{40}$, which influences the behavior of limit cycles in the system. The discussion emphasizes the importance of careful calculations in deriving the equations governing the system's dynamics.

PREREQUISITES
  • Understanding of perturbation theory in differential equations
  • Familiarity with multi-scale analysis techniques
  • Proficiency in using Maple software for mathematical computations
  • Knowledge of dynamical systems and limit cycles
NEXT STEPS
  • Study the application of multi-scale analysis in nonlinear differential equations
  • Explore the use of Maple for solving complex mathematical problems
  • Investigate the significance of critical points in dynamical systems
  • Learn about the stability analysis of limit cycles in perturbed systems
USEFUL FOR

Mathematicians, physicists, and engineers working on dynamical systems, particularly those interested in perturbation methods and stability analysis. This discussion is also beneficial for students and researchers exploring advanced mathematical modeling techniques.

Dustinsfl
Messages
2,217
Reaction score
5
$$
\frac{d^2x}{dt^2} + x + \epsilon\frac{dx}{dt}\left[1 - \left(\frac{dx}{dt}\right)^2 + \beta\left(\frac{dx}{dt}\right)^4\right] = 0,\quad\quad\epsilon\ll 1,
$$

Is there a smart way to do this problem? It will take forever to do directly.
 
Physics news on Phys.org
You can reduce the order of your perturbation expansion to something manageable i.e. order 2 (or just use maple).

Otherwise, looks like you'll have to get your hands dirty.
 
pickslides said:
You can reduce the order of your perturbation expansion to something manageable i.e. order 2 (or just use maple).

Otherwise, looks like you'll have to get your hands dirty.

How can I reduce it?
 
I have that $\left(\frac{dx}{dt}\right)^4 = \left(\frac{\partial^4}{\partial t^4} +4\epsilon \frac{\partial^4}{\partial t^3\partial T}+6\epsilon^2\frac{\partial^4}{\partial t^2\partial T^2} + 4\epsilon^2\frac{\partial^4}{\partial t\partial T^3} + \epsilon^4\frac{\partial^4}{\partial T^4}\right)(x_0^4 + 4\epsilon x_1x_0^3 + 4\epsilon^2x_0^2x_2+6\epsilon^2 x_1^2x_0^2+\cdots)$

Now when applying the differential, would I have $x_{0tttt}^4$? I am asking is the power affected?
Note $x(t,T)$.
 
I ended up with this:
\begin{alignat*}{3}
R' & = & -\frac{1}{16}(5\beta R^5 + 8R)\\
\theta' & = & 0
\end{alignat*}

When beta is 9/40 it is supposed to be special. I don't see anything different in the plots or limit cycles.
 
dwsmith said:
I ended up with this:
\begin{alignat*}{3}
R' & = & -\frac{1}{16}(5\beta R^5 + 8R)\\
\theta' & = & 0
\end{alignat*}

When beta is 9/40 it is supposed to be special. I don't see anything different in the plots or limit cycles.

Here is how I got to this point: Is there a mistake? The professor had the $R_T = \frac{1}{16}(6R^3 - 5\beta r^2 - 8r)$.
However, I was extremely careful and don't see how you get that.

For $\frac{d^4}{dt^4}$, we have
$$
\frac{d^4}{dt^4} = \left(\frac{\partial^4}{\partial t^4} + 4\varepsilon \frac{\partial^4}{\partial t^3\partial T} + 6\varepsilon^2\frac{\partial^4}{\partial t^2\partial T^2} + 4\varepsilon^3\frac{\partial^4}{\partial t\partial T^3} + \varepsilon^4\frac{\partial^4}{\partial T^4}\right).
$$
We now have that
$$
\frac{d^2x}{dt^2} = x_{0tt} + \varepsilon x_{1tt} + 2\varepsilon x_{0tT} + \cdots,
$$
$$
x = x_0 + \varepsilon x_1 + \cdots,
$$
$$
\varepsilon\frac{dx}{dt} = \varepsilon x_{0t} + \cdots,
$$
$$
-\varepsilon\frac{dx}{dt} \left(\frac{dx}{dt}\right)^2 = -\varepsilon x^2_{0ttt} - 2\varepsilon x^2_{0ttT} - \cdots,
$$
and
$$
\varepsilon \beta \frac{dx}{dt} \left(\frac{dx}{dt}\right)^4 = \varepsilon \beta x^5_{0ttttt} + \cdots .
$$
Putting it all together now
$$
x_{0tt} + \varepsilon x_{1tt} + 2\varepsilon x_{0tT} + \cdots + x_0 + \varepsilon x_1 + \cdots + \varepsilon x_{0t} + \cdots -\varepsilon x^2_{0ttt} - 2\varepsilon x^2_{0ttT} - \cdots + \varepsilon\beta x^5_{0ttttt} + \cdots = 0
$$
$$
\begin{array}{lclcl}
\text{Order } 1 & : & x_{0tt} + x_0 & = & 0\\
& & & & \\
\text{Order } \varepsilon & : & x_{1tt} + x_1 & = & x^2_{0ttt} + 2x^2_{0ttT} - x_{0t} - 2x_{0tT} - \beta x^5_{0ttttt}
\end{array}
$$
From the order 1 term, we have that $x_0 = R[T]\cos[t + \theta(T)]$.
Making the substitution into the order $\varepsilon$ term yields:
\begin{alignat*}{3}
x_{1tt} + x_1 & = & R\sin[t + \theta(T)] + 8R^2\cos[t + \theta(T)]\sin[t + \theta(T)] - \beta (1800R^5\cos^2[t + \theta(T)]\sin^3[t + \theta(T)]\\
& & - 1205R^5\cos^4[t + \theta(T)]\sin[t + \theta(T)] - 120R^5\sin^5[t + \theta(T)]) + 2(R_T\sin[t + \theta(T)]\\
& & + R\theta_T\cos[t + \theta(T)]) - 2(4RR_T\cos[t + \theta(T)]^2 - 4R_TR\sin[t + \theta(T)]^2\\
& & - 8R^2\theta_T\cos[t + \theta(T)] \sin[t + \theta(T)])
\end{alignat*}
Let $t + \theta(T) = \theta$.
Then we have
\begin{alignat*}{3}
x_{1tt} + x_1 & = & R\sin\theta + 8R^2\cos\theta\sin\theta - \beta (1800R^5\cos^2\theta\sin^3\theta - 1205R^5\cos^4\theta\sin\theta - 120R^5\sin^5\theta)\\
& & + 2(R_T\sin\theta + R\theta_T\cos\theta) - 2(4RR_T\cos\theta^2 - 4R_TR\sin\theta^2 - 8R^2\theta_T\cos\theta \sin\theta)\\
& = & \left(R + \frac{5}{8}\beta R^5 + 2R_T\right)\sin t + 2R\theta_T\cos t + \text{other terms}
\end{alignat*}
In order to suppress resonance, we must have that
\begin{alignat*}{3}
R_T + \frac{1}{16}(5\beta R^5 + 8R) & = & 0\\
2R\theta_T & = & 0
\end{alignat*}
That is,
\begin{alignat*}{3}
R_T & = & -\frac{1}{16}(5\beta R^5 + 8R)\\
\theta_T & = & 0
\end{alignat*}
The fixed points of $R_T$ are when $R_* = 0, \pm\frac{-(1/5)^{1/4} 2^{3/4}}{\beta^{1/4}}, \pm\frac{(-2)^{3/4}}{5^{1/4}\beta^{1/4}}$.
When $\beta = \frac{9}{40}$, we will either have a limit cycle of radius of approximately 1.625 or the trajectories will go to $(0,0)$ in the phase plane.
The trajectories go to $(0,0)$ when the initial conditions $x_j$ is in the interior of a circle with radius 1.625.
 
dwsmith said:
$$
\frac{d^2x}{dt^2} + x + \epsilon\frac{dx}{dt}\left[1 - \left(\frac{dx}{dt}\right)^2 + \beta\left(\frac{dx}{dt}\right)^4\right] = 0,\quad\quad\epsilon\ll 1,
$$

Is there a smart way to do this problem? It will take forever to do directly.

$x(t,\varepsilon) = x_0(t,T)+\varepsilon x_1(t,T)+\cdots$ where the slow time is $T=\varepsilon t$. Let $f(x,x') = \frac{dx}{dt}\left[1 - \left(\frac{dx}{dt}\right)^2 + \beta\left(\frac{dx}{dt}\right)^4\right]$.
$$
\frac{d}{dt}=\frac{\partial }{\partial t} +\varepsilon\frac{\partial }{\partial T}
$$
Then
$$
x_{0tt} + \varepsilon x_{1tt} + 2\varepsilon x_{0tT} + \cdots + x_0 + \varepsilon x_1 +\cdots +\varepsilon f(x_0,x_{0t})+\cdots = 0
$$
\begin{alignat}{3}
x_{0tt} + x_0 & = & 0\\
x_{1tt} + x_1 & = & - 2x_{0tT} - f(x_0,x_{0t})
\end{alignat}
Then $x_0(t,\varepsilon)=R(T)\cos(t+\phi(T))$.
$$
x_{1tt} + x_1 = 2R'\sin(t+\phi) +2R\phi'\cos(t+\phi) - f(R\cos(t+\phi),-R\sin(t+\phi))
$$
Let $\theta = t+\phi$.
Then
$$
f(R\cos\theta,-R\sin\theta) = \frac{a_0}{2} + \sum_{n=1}^{\infty}[a_n\cos n\theta + b_n\sin n\theta]
$$
where resonance is at the $n = 1$ terms.
$$
\sin\theta(2R' - b_1) = 0\quad \cos\theta(2R\phi' -a_1) = 0
$$
So
\begin{alignat}{3}
R_T & = & \frac{1}{2\pi}\int_{-\pi}^{\pi}f(R\cos\theta,-R\sin\theta)\sin\theta d\theta\\
R\phi_T & = & \frac{1}{2\pi}\int_{-\pi}^{\pi}f(R\cos\theta,-R\sin\theta)\cos\theta d\theta
\end{alignat}
Solving for $R$ first,
\begin{alignat}{3}
R(T) & = & \frac{1}{2\pi}\int_{-\pi}^{\pi}(-R\sin\theta)(1-R^2\sin^2\theta+\beta R^4\sin^4\theta)\sin\theta d\theta\\
& = & \frac{1}{2\pi}\int_{-\pi}^{\pi}[-R\sin^2\theta + R^3\sin^4\theta - \beta R^5\sin^6\theta]d\theta
\end{alignat}
Using the orthonormal basis $\left\{\frac{1}{\sqrt{2}},\cos\theta,\cos 2\theta,\ldots,\sin\theta,\ldots\right\}$, we can obtain the integral by its inner products.
\begin{alignat}{3}
R_T & = & -R\langle\sin^2\theta\rangle + R^3\langle\sin^4\theta\rangle -\beta R^5\langle\sin^6\theta\rangle\\
& = & \frac{-R}{2} + \frac{3R^3}{8} - \frac{5\beta R^5}{16}\\
& = & \frac{R}{16}(6R^2 - 8 - 5\beta R^4)
\end{alignat}
Let $\omega = R^2$.
Then
$$
6\omega - 8 - 5\beta \omega^2 = 0\Rightarrow R^2 = \omega = \frac{-6\pm\sqrt{36 - 160\beta}}{10\beta} = \frac{-3\pm\sqrt{9 - 40\beta}}{5\beta}.
$$
So
$$
R_T = \pm\sqrt{\frac{-3\pm\sqrt{9 - 40\beta}}{5\beta}}.
$$
If $9 - 40\beta < 0$, we will only have one fixed point at $(0,0)$. So the critical $\beta$ is $\beta = \frac{9}{40}$. Therefore, $0\leq\beta\leq\frac{9}{40}$. When $\beta$ is in this range, we will have 5 fixed points.
\begin{alignat}{3}
\phi(T) & = & \frac{1}{2\pi}\int_{-\pi}^{\pi}[-\sin\theta\cos\theta + R^2\sin^3\theta\cos\theta - \beta R^4\sin^5\theta\cos\theta]d\theta\\
& = & -\langle\sin\theta\cos\theta\rangle + R^2\langle\sin^3\cos\theta\rangle - \beta R^4\langle\sin^5\theta\cos\theta\rangle\\
& = & \phi_0
\end{alignat}
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
912
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
4K
  • · Replies 16 ·
Replies
16
Views
3K