dwsmith said:
I ended up with this:
\begin{alignat*}{3}
R' & = & -\frac{1}{16}(5\beta R^5 + 8R)\\
\theta' & = & 0
\end{alignat*}
When beta is 9/40 it is supposed to be special. I don't see anything different in the plots or limit cycles.
Here is how I got to this point: Is there a mistake? The professor had the $R_T = \frac{1}{16}(6R^3 - 5\beta r^2 - 8r)$.
However, I was extremely careful and don't see how you get that.
For $\frac{d^4}{dt^4}$, we have
$$
\frac{d^4}{dt^4} = \left(\frac{\partial^4}{\partial t^4} + 4\varepsilon \frac{\partial^4}{\partial t^3\partial T} + 6\varepsilon^2\frac{\partial^4}{\partial t^2\partial T^2} + 4\varepsilon^3\frac{\partial^4}{\partial t\partial T^3} + \varepsilon^4\frac{\partial^4}{\partial T^4}\right).
$$
We now have that
$$
\frac{d^2x}{dt^2} = x_{0tt} + \varepsilon x_{1tt} + 2\varepsilon x_{0tT} + \cdots,
$$
$$
x = x_0 + \varepsilon x_1 + \cdots,
$$
$$
\varepsilon\frac{dx}{dt} = \varepsilon x_{0t} + \cdots,
$$
$$
-\varepsilon\frac{dx}{dt} \left(\frac{dx}{dt}\right)^2 = -\varepsilon x^2_{0ttt} - 2\varepsilon x^2_{0ttT} - \cdots,
$$
and
$$
\varepsilon \beta \frac{dx}{dt} \left(\frac{dx}{dt}\right)^4 = \varepsilon \beta x^5_{0ttttt} + \cdots .
$$
Putting it all together now
$$
x_{0tt} + \varepsilon x_{1tt} + 2\varepsilon x_{0tT} + \cdots + x_0 + \varepsilon x_1 + \cdots + \varepsilon x_{0t} + \cdots -\varepsilon x^2_{0ttt} - 2\varepsilon x^2_{0ttT} - \cdots + \varepsilon\beta x^5_{0ttttt} + \cdots = 0
$$
$$
\begin{array}{lclcl}
\text{Order } 1 & : & x_{0tt} + x_0 & = & 0\\
& & & & \\
\text{Order } \varepsilon & : & x_{1tt} + x_1 & = & x^2_{0ttt} + 2x^2_{0ttT} - x_{0t} - 2x_{0tT} - \beta x^5_{0ttttt}
\end{array}
$$
From the order 1 term, we have that $x_0 = R[T]\cos[t + \theta(T)]$.
Making the substitution into the order $\varepsilon$ term yields:
\begin{alignat*}{3}
x_{1tt} + x_1 & = & R\sin[t + \theta(T)] + 8R^2\cos[t + \theta(T)]\sin[t + \theta(T)] - \beta (1800R^5\cos^2[t + \theta(T)]\sin^3[t + \theta(T)]\\
& & - 1205R^5\cos^4[t + \theta(T)]\sin[t + \theta(T)] - 120R^5\sin^5[t + \theta(T)]) + 2(R_T\sin[t + \theta(T)]\\
& & + R\theta_T\cos[t + \theta(T)]) - 2(4RR_T\cos[t + \theta(T)]^2 - 4R_TR\sin[t + \theta(T)]^2\\
& & - 8R^2\theta_T\cos[t + \theta(T)] \sin[t + \theta(T)])
\end{alignat*}
Let $t + \theta(T) = \theta$.
Then we have
\begin{alignat*}{3}
x_{1tt} + x_1 & = & R\sin\theta + 8R^2\cos\theta\sin\theta - \beta (1800R^5\cos^2\theta\sin^3\theta - 1205R^5\cos^4\theta\sin\theta - 120R^5\sin^5\theta)\\
& & + 2(R_T\sin\theta + R\theta_T\cos\theta) - 2(4RR_T\cos\theta^2 - 4R_TR\sin\theta^2 - 8R^2\theta_T\cos\theta \sin\theta)\\
& = & \left(R + \frac{5}{8}\beta R^5 + 2R_T\right)\sin t + 2R\theta_T\cos t + \text{other terms}
\end{alignat*}
In order to suppress resonance, we must have that
\begin{alignat*}{3}
R_T + \frac{1}{16}(5\beta R^5 + 8R) & = & 0\\
2R\theta_T & = & 0
\end{alignat*}
That is,
\begin{alignat*}{3}
R_T & = & -\frac{1}{16}(5\beta R^5 + 8R)\\
\theta_T & = & 0
\end{alignat*}
The fixed points of $R_T$ are when $R_* = 0, \pm\frac{-(1/5)^{1/4} 2^{3/4}}{\beta^{1/4}}, \pm\frac{(-2)^{3/4}}{5^{1/4}\beta^{1/4}}$.
When $\beta = \frac{9}{40}$, we will either have a limit cycle of radius of approximately 1.625 or the trajectories will go to $(0,0)$ in the phase plane.
The trajectories go to $(0,0)$ when the initial conditions $x_j$ is in the interior of a circle with radius 1.625.