MHB Can Two Solutions of a PDE be Equal with Given Boundary Conditions?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
The discussion revolves around a problem involving two C²-solutions, φ₁ and φ₂, of a PDE in a compact domain D, with specific boundary conditions. The key condition is that both solutions have equal normal derivatives on the boundary and are equal at a point on the boundary. The problem asks to demonstrate that under these conditions, φ₁ must equal φ₂ throughout the domain. The original problem statement contained a misprint, which has since been corrected, and an extension for solution submissions has been granted due to a lack of responses. The thread emphasizes the importance of clarity in problem statements and encourages community engagement in solving the PDE.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
I'm stepping in for Ackbach temporarily until he returns. Here is this week's POTW:

-----
Suppose $D$ is a compact domain of $\Bbb R^3,$ $F : D \to \Bbb R^3$ is continuous, and $\phi_1, \phi_2 : D \to \Bbb R$ are $C^2$-solutions of the PDE $\nabla^2 \phi = F$. If $\dfrac{\partial \phi_1}{\partial n} = \dfrac{\partial \phi_2}{\partial n}$ on the boundary $\partial D$ and $\phi_1(x_0) = \phi_2(x_0)$ for some $x_0\in \partial D,$ show that $\phi_1 = \phi_2$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Last edited:
Physics news on Phys.org
Hi MHB community,

There was a misprint in the original statement. The hypothesis added is $\phi_1(x_0)= \phi_2(x_0)$ for some $x_0\in \partial D$. I'm giving an extra week for users to submit solutions.
 
No one answered this week’s problem. You can read my solution below.
Let $\phi := \phi_1 - \phi_2$. Then $\phi$ is a harmonic function on $D$, and the divergence theorem gives

$$\iint_{\partial D} \phi \frac{\partial \phi}{\partial n}\, dS = \iiint_D \operatorname{div}(\phi\nabla \phi)\, dV = \iiint_D (\lvert \nabla \phi\rvert^2 + \phi \Delta \phi)\, dV = \iiint_D \lvert \nabla \phi\rvert^2\, dV$$

As $\phi = 0$ on $\partial D$, the surface integral above is zero. Hence $\iiint_D \lvert \nabla \phi\rvert^2\, dV = 0$. Since $\lvert \nabla \phi\rvert^2$ is nonnegative and continuous on $D$ it follows that $\nabla \phi = 0$. Connectedness of $D$ implies $\phi$ is constant. By hypothesis $\phi_1(x_0)=\phi_2(x_0)$, whence $\phi \equiv 0$. Thus $\phi_1 \equiv \phi_2$.