Here is the website:(adsbygoogle = window.adsbygoogle || []).push({});

http://www.columbia.edu/itc/applied/e3101/SVD_applications.pdf

I need help on understanding the second part of the document, page 13 onwards. On page 15, it showed 3 data sets, relative elevation as a function of kilometers across axis, however at page 16, the author constructed a matrix ##A## which is ##179 \times 80##. This is where I get lost. How did it come up with such a matrix of such size? Is the 80 here the number of x-axis points on the data set (assuming each point has a frequency of 1 kilometers across axis)? How about the 179? I'm supposed to do something similar, but instead of ocean ridges I need to apply it with spectral reflectances.

I have a basic understanding of what is Singular Value Decomposition (SVD), but I am not completely familiar with it. For example, I do not know how to acquire the eigenvalues acquired from SVD, since I will most likely be using the Matlab built-in function to calculate the SVD of a matrix.

Thank you in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Can you Explain this SVD Application?

Tags:

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**