MHB Can you prove the properties of convolution?

Click For Summary
The discussion focuses on proving the properties of convolution, specifically its commutative, distributive, and associative properties. The convolution of two functions, defined by the integral, satisfies the equations: \(f \ast g = g \ast f\), \(f \ast (g_1 + g_2) = f \ast g_1 + f \ast g_2\), and \(f \ast (g \ast h) = (f \ast g) \ast h\). Participants Sudharaka and Badhi provided correct solutions to the problem. Their contributions highlight the mathematical rigor involved in establishing these properties. The discussion emphasizes the importance of understanding convolution in mathematical analysis.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem.

-----

Problem: Recall that the convolution of $f$ and $g$ is defined by the integral

\[(f\ast g)(t) = \int_0^{t}f(t-\tau)g(\tau)\,d\tau.\]

Establish the commutative, distributive, and associative properties of convolution, i.e.

(1) $f\ast g = g\ast f$
(2) $f\ast (g_1 + g_2) = f\ast g_1 + f\ast g_2$
(3) $f\ast(g\ast h) = (f\ast g)\ast h$.

-----

 
Last edited:
Physics news on Phys.org
This week's question was correctly answered by Sudharaka and Badhi. You can find their solutions below.

Sudharaka's solution:

\[(f*g)(t)=\int_{0}^{t}f(t-\tau)g(\tau)\,d\tau\]

Substituting \(u=t-\tau\) we get,\begin{eqnarray}(f*g)(t)&=&-\int_{t}^{0}f(u)g(t-u)\,du\\&=&\int_{0}^{t}f(u)g(t-u)\,du\\&=&(g*f)(t)\end{eqnarray}\[\therefore f*g=g*f~~~~~~~~~~~~~(1)\]\begin{eqnarray}[f*(g_{1}+g_{2})](t)&=&\int_{0}^{t}f(t-\tau)(g_{1}+g_{2})(\tau)\,d\tau\\&=&\int_{0}^{t}f(t-\tau)[g_{1}(\tau)+g_{2}(\tau)]\,d\tau\\&=&\int_{0}^{t}f(t-\tau)g_{1}(\tau)\,d\tau+\int_{0}^{t}f(t-\tau)g_{2}(\tau)\,d\tau\\&=&(f*g_{1})(t)+(f*g_{2})(t)\end{eqnarray}\[\therefore f*(g_{1}+g_{2})=(f*g_{1})+(f*g_{2})~~~~~~~~~~~~~(2)\]\begin{eqnarray}[(f*g)*h](t)&=&\int_{0}^{t}(f*g)(t-\tau)h(\tau)\,d\tau\\&=&\int_{0}^{t}\left[\int_{0}^{t-\tau}f(t-\tau-u)g(u)\,du\right]h(\tau)\,d\tau\\\end{eqnarray}Substituting \(w=u+\tau\) we get,\[[(f*g)*h](t)=\int_{0}^{t}\left[\int_{\tau}^{t}f(t-w)g(w-\tau)\,dw\right]h(\tau)\,d\tau\]Changing the order of integration,\begin{eqnarray}[(f*g)*h](t)&=&\int_{0}^{t}\left[\int_{0}^{w}f(t-w)g(w-\tau)h(\tau)\,d\tau\right]\,dw\\&=&\int_{0}^{t}f(t-w)\left[\int_{0}^{w}g(w-\tau)h(\tau)\,d\tau\right]\,dw\\&=&\int_{0}^{t}f(t-w)(g*h)(w)\,dw\\&=&[f*(g*h)](t)\end{eqnarray}\[\therefore (f*g)*h=f*(g*h)~~~~~~~~~~~~~(3)\]

BAdhi's solution:

from the definition,
$$(f\ast g)(t)=\int_0^tf(t-\tau)g(\tau)\,d \tau$$(1) Proving that $f\ast g=g\ast f$$f\ast g =\int_0^tf(t-\tau )g(\tau )\,d \tau$with the substitution,
$$\begin{align*}t-\tau=v\\
\,dv=-\,d\tau\\
\end{align*}$$then,
$$\tau=0 \implies v=t, \qquad \tau=t \implies v=0$$
$\begin{align*}
f\ast g &=\int_0^tf(t-\tau )g(\tau )\,d \tau\\
&=-\int_t^0f(v)g(t-v)\,dv\\
\end{align*}
$Since the definite integral is independent from the variable, we can substitute $v$ with $\tau$then the equation becomes,$\begin{align*}f\ast g &=-\int_t^0f(\tau )g(t-\tau )\, d\tau\\
&=\int_0^tf(\tau )g(t-\tau )\, d\tau\\
&=\underbrace{\int_0^tg(t-\tau )f(\tau )\, d\tau }_{g\ast f}\\
\end{align*}$thus proves the commutative property,
$$f\ast g=g\ast f$$(2) proving, $f\ast (g_1+g_2)=f\ast g_1 +f\ast g_2$$\begin{align*}
f\ast(g_1+g_2)&=\int_0^tf(t-\tau )\left[g_1(\tau )+g_2(\tau )\right]\, d\tau \\
&=\int_0^t f(t-\tau )g_1(\tau ) + f(t-\tau)g_2(\tau )\, d\tau \\
&=\underbrace{\int_0^t f(t-\tau )g_1(\tau )\, d\tau }_{f\ast g_1} + \underbrace{\int_0^t f(t-\tau )g_2(\tau )\, d\tau }_{f\ast g_2}\\
\end{align*}
$thus proves the distributive property,
$$f\ast (g_1+g_2)=f\ast g_1 +f\ast g_2$$(3) proving that, $f\ast (g\ast h)=(f\ast g)\ast h$$\begin{align*}
f\ast (g\ast h) &= (g\ast h)\ast f \qquad \qquad \left(from \;proof: (1)\right)\\
&=\int_0^t\left[ (g\ast h)(t-\tau )\right] f(\tau ) \,d\tau \\
&=\int_0^tf(\tau )\left[ \int_0^{t-\tau} g(t- \tau -u)h(u) \,du\right]\,d\tau\\
&=\int_0^t\int_0^{t-\tau}f(\tau )g(t-\tau -u)h(u)\,du\,d\tau \\
\end{align*}$by changing the order of the integral, the change of boundaries of $\tau$ and $u$ are,$0<\tau<t,\: 0<u<(t-\tau) \longrightarrow 0<u<t, \: 0<\tau<(t-u) $then,$
\begin{align*}
f\ast (g\ast h) &=\int_0^t\int_0^{t-u}f(\tau )g(t-\tau -u)h(u)\,d\tau\,du\\
\end{align*}$since $h(u)$ is independent from $\tau$,$\begin{align*}
f\ast (g\ast h) &=\int_0^th(u)\underbrace{\left[ \int_0^{t-u}f(\tau )g(t-u-\tau )\,d\tau\right]}_{(g\ast f)(t-u)} \,du\\
&=\int_0^th(u)[(g\ast f)(t-u)]\,du\\
&=(g\ast f)\ast h
\end{align*}$from $proof : (1) $,$f\ast (g\ast h)=(f\ast g)\ast h$Thus proves the associative property,$$f\ast (g\ast h)=(f\ast g)\ast h$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K