MHB Can you prove these floor and ceiling equations?

  • Thread starter Thread starter Walshy1
  • Start date Start date
  • Tags Tags
    Proofs
Walshy1
Messages
3
Reaction score
0
Hi, i need help with 2 proofs based off of floor and ceiling.
1.)For any real number x, if x is not an integer, then floor(x) + floor(-x) =- 1.2.For all real numbers x, floor(floor(x/2)/2) = floor(x/4).

Thanks.
 
Physics news on Phys.org
floor(x) = x - a, where 0 <= a < 1

floor(-x) = -x - b, where 0 <= b < 1

You tell me why a + b = 1
 
tkhunny said:
floor(x) = x - a, where 0 <= a < 1

floor(-x) = -x - b, where 0 <= b < 1

You tell me why a + b = 1
I'm sorry that makes no sense to me.
 
I urge you to think more about the given hint...it leads immediately to the proof you seek.

Once this clicks, a very similar argument will work for the second proof.
 
$ \lfloor{x}\rfloor = \max\{m\in\mathbb{Z}\mid m < x\}$ when $x$ is not an integer, thus:

$ \begin{aligned} \lfloor{x}\rfloor+\lfloor{-x}\rfloor & = \max\{m\in\mathbb{Z}\mid m < x\}+\max\{m\in\mathbb{Z}\mid m < -x\} \\& = \max\{m\in\mathbb{Z}\mid 2m < 0\} = \max\{m\in\mathbb{Z}\mid m < 0\} \\& = -1.\end{aligned}$

This addition (of sets usually) is called Minkowski addition.
 
For the second problem, you can consider cases when $x$ has the form $4n+y$ and $4n+2+y$ where $n\in\mathbb{Z}$ and $0\le y<2$. For example, suppose that $x=4n+y$. Then $x/2=2n+y/2$. Since $0\le y/2<1$, $\lfloor x/2\rfloor=2n$. Therefore, $\lfloor\lfloor x/2\rfloor/2\rfloor=n$. Now you show that $\lfloor (4n+y)/4\rfloor=n$. Also, show that $\lfloor\lfloor x/2\rfloor/2\rfloor=\lfloor x/4\rfloor$ when $x=4n+2+y$ where $n\in\mathbb{Z}$ and $0\le y<2$
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top