Can you prove these floor and ceiling equations?

  • Context: MHB 
  • Thread starter Thread starter Walshy1
  • Start date Start date
  • Tags Tags
    Proofs
Click For Summary
SUMMARY

This discussion focuses on proving two mathematical equations involving the floor and ceiling functions. The first proof establishes that for any non-integer real number x, the equation floor(x) + floor(-x) = -1 holds true. The second proof demonstrates that floor(floor(x/2)/2) equals floor(x/4) for all real numbers x. Key insights include the use of Minkowski addition and specific cases for x in the form of 4n+y and 4n+2+y, where n is an integer.

PREREQUISITES
  • Understanding of floor and ceiling functions in mathematics
  • Familiarity with real numbers and integer properties
  • Knowledge of Minkowski addition in set theory
  • Basic algebraic manipulation and proof techniques
NEXT STEPS
  • Study the properties of floor and ceiling functions in detail
  • Explore Minkowski addition and its applications in proofs
  • Investigate cases of integer and non-integer values in mathematical proofs
  • Learn about advanced proof techniques in real analysis
USEFUL FOR

Mathematicians, students studying real analysis, and anyone interested in understanding proofs involving floor and ceiling functions.

Walshy1
Messages
3
Reaction score
0
Hi, i need help with 2 proofs based off of floor and ceiling.
1.)For any real number x, if x is not an integer, then floor(x) + floor(-x) =- 1.2.For all real numbers x, floor(floor(x/2)/2) = floor(x/4).

Thanks.
 
Physics news on Phys.org
floor(x) = x - a, where 0 <= a < 1

floor(-x) = -x - b, where 0 <= b < 1

You tell me why a + b = 1
 
tkhunny said:
floor(x) = x - a, where 0 <= a < 1

floor(-x) = -x - b, where 0 <= b < 1

You tell me why a + b = 1
I'm sorry that makes no sense to me.
 
I urge you to think more about the given hint...it leads immediately to the proof you seek.

Once this clicks, a very similar argument will work for the second proof.
 
$ \lfloor{x}\rfloor = \max\{m\in\mathbb{Z}\mid m < x\}$ when $x$ is not an integer, thus:

$ \begin{aligned} \lfloor{x}\rfloor+\lfloor{-x}\rfloor & = \max\{m\in\mathbb{Z}\mid m < x\}+\max\{m\in\mathbb{Z}\mid m < -x\} \\& = \max\{m\in\mathbb{Z}\mid 2m < 0\} = \max\{m\in\mathbb{Z}\mid m < 0\} \\& = -1.\end{aligned}$

This addition (of sets usually) is called Minkowski addition.
 
For the second problem, you can consider cases when $x$ has the form $4n+y$ and $4n+2+y$ where $n\in\mathbb{Z}$ and $0\le y<2$. For example, suppose that $x=4n+y$. Then $x/2=2n+y/2$. Since $0\le y/2<1$, $\lfloor x/2\rfloor=2n$. Therefore, $\lfloor\lfloor x/2\rfloor/2\rfloor=n$. Now you show that $\lfloor (4n+y)/4\rfloor=n$. Also, show that $\lfloor\lfloor x/2\rfloor/2\rfloor=\lfloor x/4\rfloor$ when $x=4n+2+y$ where $n\in\mathbb{Z}$ and $0\le y<2$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
4K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
Replies
1
Views
3K
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K