Can you solve the Laplace transform of Bessel function of the first kind of order zero?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
SUMMARY

The Laplace transform of the Bessel function of the first kind of order zero, denoted as \(J_0(t)\), is computed using its Taylor series representation. The Laplace transform is defined as \(\mathcal{L}\{f(t)\}=\displaystyle\int_0^{\infty}e^{-st}f(t)\,dt\). The results show that \(\mathcal{L}\{J_0(t)\} = \frac{1}{\sqrt{s^2+1}}\) for \(s>1\) and \(\mathcal{L}\{J_0(\sqrt{t})\}=\frac{e^{-1/4s}}{s}\) for \(s>0\). Sudharaka provided the correct solution to this problem.

PREREQUISITES
  • Understanding of Bessel functions, specifically the first kind of order zero.
  • Knowledge of Laplace transforms and their properties.
  • Familiarity with Taylor series and their convergence.
  • Basic calculus, particularly integration techniques.
NEXT STEPS
  • Study the properties of Bessel functions and their applications in physics and engineering.
  • Learn advanced techniques for computing Laplace transforms of complex functions.
  • Explore the relationship between Bessel functions and differential equations.
  • Investigate numerical methods for approximating Bessel functions and their transforms.
USEFUL FOR

Mathematicians, engineers, physicists, and students studying applied mathematics, particularly those interested in special functions and their applications in solving differential equations.

Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW. I was glad to see the large turnout! (Smile)

Here's the problem for this week; I've decided to revisit the topic of Bessel functions.

-----

Problem: The Bessel function of the first kind of order zero is defined by the following Taylor series:

\[J_0(t) = \sum_{n=0}^{\infty}\frac{(-1)^nt^{2n}}{(n!)^22^{2n}}\]

Let $\mathcal{L}\{f(t)\}=\displaystyle\int_0^{\infty}e^{-st}f(t)\,dt$ denote the Laplace transform of $f(t)$. Assuming that we can compute Laplace transforms term by term, show that

\[\mathcal{L}\{J_0(t)\} = \frac{1}{\sqrt{s^2+1}},\qquad s>1\]

and

\[\mathcal{L}\{J_0(\sqrt{t})\}=\frac{e^{-1/4s}}{s},\qquad s>0.\]

-----

 
Physics news on Phys.org
This problem was correctly answered by Sudharaka. Here's his solution.

\[J_0(t) = \sum_{n=0}^{\infty}\frac{(-1)^nt^{2n}}{(n!)^22^{2n}}\]

\[\Rightarrow\mathcal{L}\{J_{0}(t)\}=\int_0^{ \infty}e^{-st}\sum_{n=0}^{\infty}\frac{(-1)^nt^{2n}}{(n!)^22^{2n}}\,dt\]Since the series representation of the Bessel function is a power series we can integrate term by term,\[{L}\{J_{0}(t)\}=\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(n!)^22^{2n}}\int_0^{ \infty}e ^{-st}t^{2n}\,dt\right)\]Since, \(\displaystyle\mathcal{L}\{t^{2n}\}=\int_0^{ \infty}e ^{-st}t^{2n}\,dt=\frac{(2n)!}{s^{2n+1}}\mbox{ for }s>0\)\[{L}\{J_{0}(t)\}=\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(n!)^22^{2n}}\frac{(2n)!}{s^{2n+1}}\right)~~~~~~~~~~(1)\]Now we shall show by mathematical induction, \(\displaystyle\frac{(-1)^n(2n)!}{(n!)^22^{2n}}=\binom{-\frac{1}{2}}{n}\mbox{ for each }n\in\mathbb{N}=\mathbb{Z}\cup\{0\}\)It is clear that the above statement holds for \(n=0\). Suppose the statement is true for \(n=p\in\mathbb{N}\). That is,\[\frac{(-1)^p(2p)!}{(p!)^22^{2p}}=\binom{-\frac{1}{2}}{p}\]Consider, \(\displaystyle\frac{(-1)^{p+1}(2(p+1))!}{((p+1)!)^22^{2(p+1)}}\)\begin{eqnarray}\frac{(-1)^{p+1}(2(p+1))!}{((p+1)!)^22^{2(p+1)}}&=&\frac{(-1)^p(2p)!}{(p!)^22^{2p}}\left(\frac{(-1)(2p+2)(2p+1)}{2^2(p+1)}\right)\\&=&\binom{-\frac{1}{2}}{p}\left(\frac{-p-\frac{1}{2}}{p+1}\right)\\&=&\binom{-\frac{1}{2}}{p+1}\end{eqnarray}Hence by mathematical induction, \(\displaystyle\frac{(-1)^n(2n)!}{(n!)^22^{2n}}=\binom{-\frac{1}{2}}{n}\mbox{ for each }n\in\mathbb{N}=\mathbb{Z}\cup\{0\}~~~~~~~~~~~~(2)\)By (1) and (2),\begin{eqnarray}{L}\{J_{0}(t)\}&=&\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\frac{1}{s^{2n+1}}\\&=&\frac{1}{s}\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(\frac{1}{s^2}\right)^n\\\end{eqnarray}\(\displaystyle\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(\frac{1}{s^2}\right)^n\) is the Taylor series expansion of \(\displaystyle\left(1+\frac{1}{s^2}\right)^{-\frac{1}{2}}\mbox{ for }\frac{1}{s^2}<1\Rightarrow s>1\mbox{ (Since s>0)}\)\[\therefore{L}\{J_{0}(t)\}=\frac{1}{s}\left(1+\frac{1}{s^2}\right)^{-\frac{1}{2}}=\frac{1}{\sqrt{s^2+1}}\mbox{ for }s\geq 1\]Now we shall show that, \(\displaystyle\mathcal{L}\{J_0(\sqrt{t})\}=\frac{e^{-1/4s}}{s}\mbox{ where }s>0\,.\)\[J_0(\sqrt{t}) = \sum_{n=0}^{\infty}\frac{(-1)^nt^{n}}{(n!)^22^{2n}}\]\[\Rightarrow\mathcal{L}\{J_{0}(\sqrt{t})\}=\int_0^{ \infty}e^{-st}\sum_{n=0}^{\infty}\frac{(-1)^nt^{n}}{(n!)^22^{2n}}\,dt\]Since the series representation of the Bessel function is a power series we can integrate term by term,\[{L}\{J_{0}(t)\}=\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(n!)^22^{2n}}\int_0^{ \infty}e ^{-st}t^{n}\,dt\right)\]Since, \(\displaystyle\mathcal{L}\{t^{n}\}=\int_0^{ \infty}e ^{-st}t^{n}\,dt=\frac{n!}{s^{n+1}}\mbox{ for }s>0\)\begin{eqnarray}{L}\{J_{0}(t)\}&=&\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(n!)^22^{2n}}\frac{n!}{s^{n+1}}\right)\\&=&\frac{1}{s}\sum_{n=0}^{\infty}\frac{\left(-\frac{1}{4s}\right)^n}{n!}\\\end{eqnarray}Since, \(\displaystyle e^{-\frac{1}{4s}}=\sum_{n=0}^{\infty}\frac{\left(-\frac{1}{4s}\right)^n}{n!}\)\[\mathcal{L}\{J_0(\sqrt{t})\}=\frac{e^{-1/4s}}{s}\mbox{ for }s>0\]Q.E.D
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
619
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
1
Views
2K