MHB Can you solve the Laplace transform of Bessel function of the first kind of order zero?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on solving the Laplace transform of the Bessel function of the first kind of order zero, defined by its Taylor series. Participants are tasked with demonstrating that the Laplace transform of J_0(t) equals 1/√(s²+1) for s > 1 and that the transform of J_0(√t) equals e^(-1/4s)/s for s > 0. Sudharaka successfully provided the correct solution to the problem. The thread highlights the collaborative effort in tackling advanced mathematical concepts. Overall, the focus remains on the application of Laplace transforms to Bessel functions.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW. I was glad to see the large turnout! (Smile)

Here's the problem for this week; I've decided to revisit the topic of Bessel functions.

-----

Problem: The Bessel function of the first kind of order zero is defined by the following Taylor series:

\[J_0(t) = \sum_{n=0}^{\infty}\frac{(-1)^nt^{2n}}{(n!)^22^{2n}}\]

Let $\mathcal{L}\{f(t)\}=\displaystyle\int_0^{\infty}e^{-st}f(t)\,dt$ denote the Laplace transform of $f(t)$. Assuming that we can compute Laplace transforms term by term, show that

\[\mathcal{L}\{J_0(t)\} = \frac{1}{\sqrt{s^2+1}},\qquad s>1\]

and

\[\mathcal{L}\{J_0(\sqrt{t})\}=\frac{e^{-1/4s}}{s},\qquad s>0.\]

-----

 
Physics news on Phys.org
This problem was correctly answered by Sudharaka. Here's his solution.

\[J_0(t) = \sum_{n=0}^{\infty}\frac{(-1)^nt^{2n}}{(n!)^22^{2n}}\]

\[\Rightarrow\mathcal{L}\{J_{0}(t)\}=\int_0^{ \infty}e^{-st}\sum_{n=0}^{\infty}\frac{(-1)^nt^{2n}}{(n!)^22^{2n}}\,dt\]Since the series representation of the Bessel function is a power series we can integrate term by term,\[{L}\{J_{0}(t)\}=\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(n!)^22^{2n}}\int_0^{ \infty}e ^{-st}t^{2n}\,dt\right)\]Since, \(\displaystyle\mathcal{L}\{t^{2n}\}=\int_0^{ \infty}e ^{-st}t^{2n}\,dt=\frac{(2n)!}{s^{2n+1}}\mbox{ for }s>0\)\[{L}\{J_{0}(t)\}=\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(n!)^22^{2n}}\frac{(2n)!}{s^{2n+1}}\right)~~~~~~~~~~(1)\]Now we shall show by mathematical induction, \(\displaystyle\frac{(-1)^n(2n)!}{(n!)^22^{2n}}=\binom{-\frac{1}{2}}{n}\mbox{ for each }n\in\mathbb{N}=\mathbb{Z}\cup\{0\}\)It is clear that the above statement holds for \(n=0\). Suppose the statement is true for \(n=p\in\mathbb{N}\). That is,\[\frac{(-1)^p(2p)!}{(p!)^22^{2p}}=\binom{-\frac{1}{2}}{p}\]Consider, \(\displaystyle\frac{(-1)^{p+1}(2(p+1))!}{((p+1)!)^22^{2(p+1)}}\)\begin{eqnarray}\frac{(-1)^{p+1}(2(p+1))!}{((p+1)!)^22^{2(p+1)}}&=&\frac{(-1)^p(2p)!}{(p!)^22^{2p}}\left(\frac{(-1)(2p+2)(2p+1)}{2^2(p+1)}\right)\\&=&\binom{-\frac{1}{2}}{p}\left(\frac{-p-\frac{1}{2}}{p+1}\right)\\&=&\binom{-\frac{1}{2}}{p+1}\end{eqnarray}Hence by mathematical induction, \(\displaystyle\frac{(-1)^n(2n)!}{(n!)^22^{2n}}=\binom{-\frac{1}{2}}{n}\mbox{ for each }n\in\mathbb{N}=\mathbb{Z}\cup\{0\}~~~~~~~~~~~~(2)\)By (1) and (2),\begin{eqnarray}{L}\{J_{0}(t)\}&=&\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\frac{1}{s^{2n+1}}\\&=&\frac{1}{s}\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(\frac{1}{s^2}\right)^n\\\end{eqnarray}\(\displaystyle\sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(\frac{1}{s^2}\right)^n\) is the Taylor series expansion of \(\displaystyle\left(1+\frac{1}{s^2}\right)^{-\frac{1}{2}}\mbox{ for }\frac{1}{s^2}<1\Rightarrow s>1\mbox{ (Since s>0)}\)\[\therefore{L}\{J_{0}(t)\}=\frac{1}{s}\left(1+\frac{1}{s^2}\right)^{-\frac{1}{2}}=\frac{1}{\sqrt{s^2+1}}\mbox{ for }s\geq 1\]Now we shall show that, \(\displaystyle\mathcal{L}\{J_0(\sqrt{t})\}=\frac{e^{-1/4s}}{s}\mbox{ where }s>0\,.\)\[J_0(\sqrt{t}) = \sum_{n=0}^{\infty}\frac{(-1)^nt^{n}}{(n!)^22^{2n}}\]\[\Rightarrow\mathcal{L}\{J_{0}(\sqrt{t})\}=\int_0^{ \infty}e^{-st}\sum_{n=0}^{\infty}\frac{(-1)^nt^{n}}{(n!)^22^{2n}}\,dt\]Since the series representation of the Bessel function is a power series we can integrate term by term,\[{L}\{J_{0}(t)\}=\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(n!)^22^{2n}}\int_0^{ \infty}e ^{-st}t^{n}\,dt\right)\]Since, \(\displaystyle\mathcal{L}\{t^{n}\}=\int_0^{ \infty}e ^{-st}t^{n}\,dt=\frac{n!}{s^{n+1}}\mbox{ for }s>0\)\begin{eqnarray}{L}\{J_{0}(t)\}&=&\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{(n!)^22^{2n}}\frac{n!}{s^{n+1}}\right)\\&=&\frac{1}{s}\sum_{n=0}^{\infty}\frac{\left(-\frac{1}{4s}\right)^n}{n!}\\\end{eqnarray}Since, \(\displaystyle e^{-\frac{1}{4s}}=\sum_{n=0}^{\infty}\frac{\left(-\frac{1}{4s}\right)^n}{n!}\)\[\mathcal{L}\{J_0(\sqrt{t})\}=\frac{e^{-1/4s}}{s}\mbox{ for }s>0\]Q.E.D
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K