MHB Can You Verify This Trigonometric Identity Involving Cosecant Functions?

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The discussion revolves around proving the trigonometric identity involving cosecant functions: $\csc 6^{\circ} + \csc 78^{\circ} - \csc 42^{\circ} - \csc 66^{\circ} = 8$. A participant references the book "Trigonometric Delights" by Eli Maor as a helpful resource for the proof. The thread includes a detailed proof provided by a user, showcasing the steps taken to validate the identity. The conversation emphasizes the significance of understanding trigonometric identities and their applications. The identity is ultimately confirmed through the proof presented.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Prove that $\csc 6^{\circ}+\csc 78^{\circ}- \csc 42^{\circ} - \csc 66^{\circ}=8$.

-----

 
Physics news on Phys.org
I hoped the popular math book I have Trigonometric Delights by Eli Maor would come in handy someday..

Here is my proof.

Since csc is just inverse sine we have to prove

$$ \frac{1}{sin{(6)}} + \frac{1}{sin{(78)}} - \frac{1}{sin{(42)}} - \frac{1}{sin{(66)}} = 8$$

grouping as

$$ \left(\frac{1}{sin{(6)}} - \frac{1}{sin{(66)}}\right) + \left(\frac{1}{sin{(78)}} - \frac{1}{sin{(42)}}\right)$$

$$\left(\frac{sin(66) - sin(6)}{sin(6)sin(66)}\right) - \left(\frac{sin(78) - sin(42)}{sin(42)sin(78)}\right)$$

using the identities
$$sin(A) - sin(B) = 2 cos(\frac{A + B)}{2})sin(\frac{(A - B)}{2}$$
$$sin(A)sin(B) = \frac{sin(A + B) + sin(A - B)}{2}$$
we have
$$ sin(66) - sin(6) = 2cos(\frac{72}{2})sin(\frac{60}{2}) = 2cos(36)sin(30)$$
$$sin(6)sin(66) = \frac{cos(60) - cos(72)}{2}$$
$$ sin(78) - sin(42) = 2cos(60)sin(18) = 2cos(60)cos(72)$$
since ##sin(18)=cos(90-18) = cos(72)## and
$$sin(78)sin(42) = \frac{cos(36) - cos(120)}{2}$$

putting it together the terms are


$$ \frac{4cos(36)sin(30)}{cos(60) - cos(72) } = \frac{4cos(36)}{1 - 2cos(72) }$$

$$ \frac{4cos(60)cos(72)}{cos(36) - cos(120) } = \frac{4cos(72)}{1 + 2cos(36) }$$

so we have

$$4\left(\frac{cos(36)}{1 - 2cos(72) } - \frac{cos(72)}{1 + 2cos(36) }\right)$$At this point we need an actual value since this relationship does not work for all angles otherwise we could just use more trig identities. It is well known that $$sin(54)=\frac{1 + \sqrt{5}}{4} = cos(36)$$ then we can get $$cos(72) = \frac{-1 + \sqrt{5}}{4}$$
then we have
$$4 \left( \frac{ \large\frac{ \sqrt{5} +1}{4}}{1 - 2(\frac{ \sqrt{5} -1)}{4})} - \frac{ \large\frac{ \sqrt{5} -1}{4}}{1 + 2(\frac{ \sqrt{5} +1)}{4})} \right)$$

which simplifies to

$$ 4\left( \frac{ \sqrt{5} +1}{6 - 2\sqrt{5}} - \frac{ \sqrt{5} -1}{6 + 2\sqrt{5}}\right) $$

getting a common denominator

$$4\left(\frac{(1+\sqrt{5})(6+2\sqrt{5}) + ((1-\sqrt{5})(6-2\sqrt{5})}{(6+2\sqrt{5})(6-2\sqrt{5})}\right)$$
$$4\left( \frac{6 + 8\sqrt{5} + 10 + 6 - 8\sqrt{5} +10}{36 - 12\sqrt{5} + 12\sqrt{5} - 20}\right)$$
$$ 4\left( \frac{32}{16}\right) = 8$$

[\SPOILER]
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K