MHB How many subsets of set A satisfy given conditions?

  • Thread starter Thread starter Evgeny.Makarov
  • Start date Start date
  • Tags Tags
    Finite Sets
Click For Summary
SUMMARY

The discussion centers on a combinatorial problem involving set theory, specifically the conditions for subsets of a set A. Given the parameters |A-(B∩C)|=8, |B|=5, |C-B|=1, and |B∩C|=3, the challenge is to determine the number of subsets X of A that meet the criteria X∩B∩C≠∅, |X-(B∪C)|≥3, and |X∩(B-C)|=2. The problem is classified as suitable for college freshmen or secondary school students, indicating its foundational nature in algebra and pre-calculus.

PREREQUISITES
  • Understanding of set theory concepts, including set difference and intersection.
  • Familiarity with combinatorial counting principles.
  • Basic knowledge of algebraic expressions and inequalities.
  • Ability to manipulate and solve equations involving sets.
NEXT STEPS
  • Study combinatorial set theory to deepen understanding of subset relationships.
  • Learn about the principles of inclusion-exclusion in counting subsets.
  • Explore advanced topics in algebra related to set operations and their applications.
  • Practice solving similar problems involving set intersections and unions.
USEFUL FOR

This discussion is beneficial for students in mathematics, particularly those studying algebra and set theory, as well as educators looking for examples of combinatorial problems suitable for introductory courses.

Evgeny.Makarov
Gold Member
MHB
Messages
2,434
Reaction score
4
Consider a set $A$ and its subsets $B$ and $C$. It is known that $|A-(B\cap C)|=8$, $|B|=5$, $|C-B|=1$ and $|B\cap C|=3$ (here $-$ denotes set difference). How many subsets $X\subseteq A$ are there if $X\cap B\cap C\ne\emptyset$, $|X-(B\cup C)|\ge3$ and $|X\cap (B-C)|=2$?
 
Physics news on Phys.org
Since nobody gave an answer, I am posting a solution.

I will omit $\cap$ and write intersection as multiplication. I will also write $\sqcup$ for disjoint union.

In this problem $A$ is the universal set, and each element of $A$ belongs to exactly one of four classes: it can fall in or outside $B$ and $C$. Since $A-BC=\overline{BC}=\overline{B}\cup\overline{C}=\overline{B}C\sqcup B\overline{C}\sqcup\overline{B}\overline{C}$, $B=BC\sqcup B\overline{C}$ and $C-B=\overline{B}C$, we have the following system of equations.
\begin{align*}
|\overline{B}C|+|B\overline{C}|+|\overline{B}\overline{C}|&=8\\
|BC|+|B\overline{C}|&=5\\
|\bar{B}C|&=1\\
|BC|&=3
\end{align*}
Solving this system, we can fill the following table form of the Venn diagram.
\begin{tikzpicture}[scale=1.3,y={(0cm,-1cm)}]
\draw[step=1cm] (-.3,-.3) grid (2,2);
\node[above] at (.5,0) {$B$};
\node[above] at (1.5,0) {$\overline{B}$};
\node
at (0,.5) {$C$};
\node
at (0,1.5) {$\overline{C}$};
\path[shift={(.5,.5)}] (0,0) node {3} (1,0) node {1} (0,1) node {2} (1,1) node {5};
\end{tikzpicture}

Set \(X\) is also split into four disjoint classes. The condition $XBC\ne\emptyset$ gives us $2^3-1=7$ variants for $XBC$. The condition $|X-(B\cup C)|\ge3$ means that $X\overline{B}\overline{C}$ can be chosen in $\binom{5}{3}+\binom{5}{4}+\binom{5}{5}=16$ ways. The condition $|X(B-C)|=|XB\overline{C}|=2$ requires that both elements of $B\overline{C}$ are included in $X$. Finally, the problem does not say anything about $X\overline{B}C$, which gives us two variants: the only element of $\overline{B}C$ may or may not be in $X$. Altogether, there are $7\cdot16\cdot2=224$ variants for $X$.​


I would appreciate your opinion on the difficulty level of this problem. Which year in the university is it appropriate for?​
 
That looks like a fairly standard algebra or pre-calculus problem. I wouldn't be surprised to see it in a college freshman or even secondary school class.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K