I Choosing from identical objects of different types

  • Thread starter Thread starter yucheng
  • Start date Start date
Click For Summary
The discussion centers on the challenges of selecting from identical objects of different types, highlighting that traditional methods like inclusion-exclusion (PIE) can be impractical. Participants suggest exploring the hypergeometric distribution and generating functions as potential solutions, though they note limitations in calculating coefficients. There is a consensus that defining the term "number of ways" is crucial due to its ambiguity with identical items. The multivariate hypergeometric distribution is mentioned as a necessary tool for calculating probabilities in these scenarios. Overall, the conversation emphasizes the complexity of the problem and the need for clearer definitions and methods.
yucheng
Messages
232
Reaction score
57
TL;DR
I am asking about the general formulation. But to be concrete....

How many ways can we choose 6 objects from say {A,A,B,B,B,C,D,E,E,E,F,G,G,G}? (identical objects of different type)

Pure evil: What's the probability of choosing 2A's and 2 B's?

This can be formulated as partitions with constraints or choosing with finite replacement or choosing from identical objects of different types.
Do you have any comments? What's the most general way to solve it? Inclusion-exclusion (PIE) is impractical for general case. Where to read further on this problem?

Here's what I've found.

Hypergeometric distribution???
https://math.stackexchange.com/ques...-out-of-n-identical-objects?noredirect=1&lq=1

Generating functions: this is promising but incomplete. Is brute force expansion the only way to get the coefficient?
https://math.stackexchange.com/ques...replacement-from-a-set-that-contains-duplicat
https://math.stackexchange.com/a/2757736/767174

Generating functions: Perhaps more complete and concrete. But in the end, the author is unable to compute the coefficients (at least by hand) but still suggests PIE
https://math.stackexchange.com/questions/41724/combination-problem-with-constraints

Again PIE (with stars and bars)
https://math.stackexchange.com/questions/3047584/drawing-balls-with-a-finite-number-of-replacement

Slightly more comprehensive, but the author suggests PIE, which kills the brain for slightly more complicated problems
https://math.stackexchange.com/ques...mula-for-combinations-with-identical-elements

I think this is plain wrong!
https://math.stackexchange.com/questions/582788/distinct-combinations-of-non-distinct-elements?rq=1
 
Physics news on Phys.org
To calculate probabilities I think you need the multivariate hypergeometric distribution, described here: https://en.wikipedia.org/wiki/Hypergeometric_distribution#Multivariate_hypergeometric_distribution
It is a generalisation of the hypergeometric distribution to cases where there are more than two categories (usually described as colours).

To count the "number of ways" we'd first need to define exactly what we mean by that, as the term becomes ambiguous when we have identical items.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 43 ·
2
Replies
43
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
17
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
26
Views
5K