CHSH and the triangle inequality

Click For Summary
SUMMARY

The forum discussion centers on the CHSH inequality proof as presented on Wikipedia. The user Gespex successfully derives the initial equation involving integrals of functions A and B but struggles with applying the triangle inequality to reach the subsequent equation. The key steps involve recognizing the non-negativity of certain terms and applying the absolute value properties correctly. Ultimately, the proof demonstrates that the absolute difference of expected values is bounded by the sum of integrals of non-negative functions.

PREREQUISITES
  • Understanding of the CHSH inequality in quantum mechanics.
  • Familiarity with integral calculus and properties of integrals.
  • Knowledge of absolute value properties and inequalities.
  • Basic concepts of quantum mechanics, particularly the behavior of observables.
NEXT STEPS
  • Study the derivation of the CHSH inequality in detail, focusing on quantum mechanics applications.
  • Learn about the properties of integrals, especially regarding absolute values and inequalities.
  • Explore the implications of the triangle inequality in mathematical proofs.
  • Investigate the significance of non-negative functions in quantum mechanics and their role in inequalities.
USEFUL FOR

Researchers, students, and professionals in quantum mechanics, particularly those interested in the mathematical foundations of quantum inequalities and their applications in experimental physics.

gespex
Messages
56
Reaction score
0
Hello everybody,

I've been trying to understand the CHSH proof as it is listed on Wikipedia:
http://en.wikipedia.org/wiki/CHSH_inequality

I got to this without any problem:
E(a, b) - E(a, b^\prime) = \int \underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda - \int \underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda

However, now it mentions two things to get to the next step:
- The fact that [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda) and [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda) are non-negative (easy enough to see).
- The triangle inequality "to both sides" (how?)

And the next equation is:
|E(a, b) - E(a, b^\prime)| \leq \int [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda + \int [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda

I don't understand how it gets to this last equation from the one before. Could somebody please explain?Thanks in advance,
Gespex
 
Last edited:
Physics news on Phys.org
gespex said:
Hello everybody,

I've been trying to understand the CHSH proof as it is listed on Wikipedia:
http://en.wikipedia.org/wiki/CHSH_inequality

I got to this without any problem:
E(a, b) - E(a, b^\prime) = \int \underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda - \int \underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda

However, now it mentions two things to get to the next step:
- The fact that [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda) and [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda) are non-negative (easy enough to see).
- The triangle inequality "to both sides" (how?)

And the next equation is:
|E(a, b) - E(a, b^\prime)| \leq \int [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda + \int [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda

I don't understand how it gets to this last equation from the one before. Could somebody please explain?


Thanks in advance,
Gespex

So you have:
E(a, b) - E(a, b^\prime) = \int \underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda - \int \underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda

Taking absolute value of both sides
|E(a, b) - E(a, b^\prime)| = |\int \underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda - \int \underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda|

Using |A \pm B| \le |A| + |B|:

|E(a, b) - E(a, b^\prime)| \le |\int \underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda| + |\int \underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda|

Then using | \int f(x) dx | \le \int |f(x)| dx, (which, if you think of it, is just a variation of the above):

|E(a, b) - E(a, b^\prime)| \le \int |\underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda) | d\lambda + \int |\underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)|d\lambda

And since |\underline {A}(a, \lambda)\underline {B}(b, \lambda)|=1, and both 1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda) \ge 0 and \rho(\lambda) \ge 0, we get:

|E(a, b) - E(a, b^\prime)| \leq \int [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda + \int [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda
 
Delta Kilo said:
So you have:
E(a, b) - E(a, b^\prime) = \int \underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda - \int \underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda

Taking absolute value of both sides
|E(a, b) - E(a, b^\prime)| = |\int \underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda - \int \underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda|

Using |A \pm B| \le |A| + |B|:

|E(a, b) - E(a, b^\prime)| \le |\int \underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda| + |\int \underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda|

Then using | \int f(x) dx | \le \int |f(x)| dx, (which, if you think of it, is just a variation of the above):

|E(a, b) - E(a, b^\prime)| \le \int |\underline {A}(a, \lambda)\underline {B}(b, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda) | d\lambda + \int |\underline {A}(a, \lambda)\underline {B}(b^\prime, \lambda)[1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)|d\lambda

And since |\underline {A}(a, \lambda)\underline {B}(b, \lambda)|=1, and both 1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda) \ge 0 and \rho(\lambda) \ge 0, we get:

|E(a, b) - E(a, b^\prime)| \leq \int [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b^\prime, \lambda)]\rho(\lambda)d\lambda + \int [1 \pm \underline {A}(a^\prime, \lambda)\underline {B}(b, \lambda)]\rho(\lambda)d\lambda

Thanks a lot! The proof's easy enough to follow like that. But this statement seems to me to contradict Wikipedia (though it's probably just my ignorance):
|\underline {A}(a, \lambda)\underline {B}(b, \lambda)|=1

As Wikipedia says "Since the possible values of A and B are −1, 0 and +1". So couldn't it also be that |\underline {A}(a, \lambda)\underline {B}(b, \lambda)|=0?

It also says "where \underline {A} and \underline {B} are the average values of the outcomes", so not just -1, 0 or 1, but any value from -1 to 1, which would mean only that: 0 \le |\underline {A}(a, \lambda)\underline {B}(b, \lambda)|\le 1

Or am I missing something here?
 
gespex said:
Or am I missing something here?
Oh, I'm sorry, you are right of course, it should have been |\underline {A}(a, \lambda)\underline {B}(b, \lambda)| \le 1. It does not change anything though.
 
Delta Kilo said:
It does not change anything though.

Oops, yeah, good point. Thanks!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K