Converges to same function on all compact sets:
For two overlapping compact sets ##K_A , K_B## contained in ##\mathbb{D}## write ##f_n \overset{u}{\rightarrow} f_A## and ##f_n \overset{u}{\rightarrow} f_B##. Do we have on the overlap, ##K_A \cap K_B##, that ##f_A (z) = f_B (z)##? We have:
\begin{align*}
\sup_{z \in K_A \cap K_B} |f_A (z) - f_B (z)| & = \sup_{z \in K_A \cap K_B} |f_A (z) - f_n (z) - f_n (z) - f_B (z)|
\nonumber \\
& \leq \sup_{z \in K_A \cap K_B} |f_n (z) - f_A (z)| + \sup_{z \in K_A \cap K_B} |f_n (z) - f_B (z)|
\nonumber \\
& \leq \sup_{z \in K_A} |f_n (z) - f_A (z)| + \sup_{z \in K_B} |f_n (z) - f_B (z)|
\end{align*}
So that:
\begin{align*}
\sup_{z \in K_A \cap K_B} |f_A (z) - f_B (z)| \leq \lim_{n \rightarrow \infty} \sup_{z \in K_A} |f_n (z) - f_A (z)| + \lim_{n \rightarrow \infty} \sup_{z \in K_B} |f_n (z) - f_B (z)| = 0
\end{align*}
Implying ##f_A(z) = f_B(z) = f(z)## on ##K_A \cap K_B##.
If we have two compact sets ##K_A## and ##K_B## that do not overlap, we can always find a third compact set, ##K_C##, that intersects both ##K_A## and ##K_B##. By a similar argument, this implies that ##f(z)## is the same function on the compact sets ##K_A## and ##K_B##. This implies that the function ##f(z)##, to which ##f_n (z)## converges uniformly on each compact set, is the same function on all compact sets. So if, for example, ##f(z)= z + z^2## on one compact set, you would have ##f(z)= z + z^2## on all compact sets.
Convergence to function ##f(z)## in limit ##\mathbb{D} = \lim_{i \rightarrow \infty} B (0 , 1-\frac{1}{i})##:
In particular, as closed bounded sets are compact, we can say that ##f_n (z)## converges uniformly on every closed ball ##\overline{B (0 , 1-\frac{1}{i})}## for ##i \in \mathbb{N}##, and to the same function ##f(z)##. So we have that ##f_n (z)## converges uniformly on every open ball ##B (0 , 1-\frac{1}{i})## for ##i \in \mathbb{N}##, and to the same function ##f(z)##.
Is the following formal argument needed? For ##B_i = B (0 , 1-\frac{1}{i})## we have ##\lim_{i \rightarrow \infty} B_i = \mathbb{D}##. Write ##f_n (z) |_{B_i}## for the restriction of ##f_n (z)## to ##B_i##. Then ##\lim_{i \rightarrow \infty} f_n (z) |_{B_i} = f_n (z)##. Do we have ##\lim_{n \rightarrow \infty} \lim_{i \rightarrow \infty} f_n (z) |_{B_i} = \lim_{i\rightarrow \infty} \lim_{n \rightarrow \infty} f_n (z) |_{B_i}##?
Choose ##z \in \mathbb{D}##. There is an ##I## such that ##z \not\in B_I## but ##z \in B_{I+1}##. There exists ##N_1 \in \mathbb{N}## independent of ##n## such that for all ##n \in \mathbb{N}##, ##i,j > N_1## implies
\begin{align*}
|f_n (z)|_{B_i} - f_n (z)|_{B_j}| = 0 .
\end{align*}
(obviously, ##N_1##, is any integer such that ##N_1 \geq I##). As ##n \rightarrow \infty##, ##|f (z)|_{B_i} - f (z)|_{B_j}| = 0## which means ##f (z) |_{B_i}## is a Cauchy sequence which converges to a unique limit ##L##. In addition, as ##j \rightarrow \infty##, we have ##|f (z) |_{B_i} - L| = 0##.
On the other hand, if we take ##j \rightarrow \infty## first, we have ##|f_n (z) |_{B_i} - f_n (z)| = 0##.
For ##i > N_1##, given ##\epsilon > 0## there exists ##N_2## such that for all ##n > N_2## we have ##|f_n (z)|_{B_i}| - f (z)|_{B_i}| < \epsilon##. So
\begin{align*}
|f_n (z) - L| & \leq |f_n (z) - f_n (z)|_{B_i}| + |f_n (z)|_{B_i} - f (z)|_{B_i}| + |f(z)|_{B_i} - L|
\nonumber \\
& < 0 + \epsilon + 0
\end{align*}
This proves that
\begin{align*}
\lim_{n \rightarrow \infty} \lim_{i \rightarrow \infty} f_n (z)|_{B_i} = L = \lim_{i \rightarrow \infty} f(z)|_{B_i}
\end{align*}
##f(z)## is Holomorphic:
If we show that in every open ball ##B(a,r)## whose closure is contained in ##\mathbb{D}##, that ##f(z)## is holomorphic, we find that ##f(z)## is holomorphic in all of ##\mathbb{D}##.
Let ##\overline{B (a,r)}## be a closed ball contained in ##\mathbb{D}##. Let ##\gamma## be an arbitrary triangle contained in ##B(a,r)##. The closed ball ##\overline{B (a,r)}## is closed and bounded and so compact. So ##f_n (z)## uniformly converges to ##f(z)## in ##\overline{B (a,r)}##. Implying
\begin{align*}
\lim_{n \rightarrow \infty} \oint_\gamma f_n (z) dz = \oint_\gamma f (z) dz
\end{align*}
and ##f(z)## is continuous on ##\overline{B (a,r)}##. For all triangles, ##\gamma \subset B(a,r)##, by Cauchy's theorem:
\begin{align*}
\oint_\gamma f_n (z) dz & = 0
\end{align*}
So we have for our arbitrary triangle:
\begin{align*}
\oint_\gamma f (z) dz & = 0 .
\end{align*}
Morera's theorem. Suppose that ##f(z)## is continuous on an open set ##G## and that ##\int f_\gamma ( z ) dz = 0## for all triangles ##\gamma## in ##G##. Then ##f(z) \in \mathcal{O} (G)##.
We have that for all triangles ##\gamma \subset B(a,r)## that ##\oint_\gamma f (z) dz = 0## and that ##f(z)## is continuous on ##B(a,r)##. We can apply Morera's theorem to conclude that ##f(z)## is holomorphic on ##B(a,r)##.
Square-integrable: ##f(z) \in L^2 (\mathbb{D})##
We now show that ##\| f \|_2 < \infty##. As ##f_n (z)## converges to ##f(z)## in ##\mathbb{D}##, ##|f_n(z)|^2## converges pointwise to ##|f(z)|^2##, because:
\begin{align*}
|f_n (z) f_n^* (z) - f (z) f^* (z)| & = |f_n (z) f_n^* (z) - f(z) f_n^* (z) + f(z) f_n^* (z) - f (z) f^* (z)|
\nonumber \\
& \leq (|f_n (z)| + |f(z)|) |f_n (z) - f(z)|
\end{align*}
We have ##|f_n (z)|^2 = u_n^2 (x,y) + v_n^2 (x,y) \geq 0##. By Fatou's lemma ##\| f \|_2 < \infty##.