MHB Coefficient solving for a PDE-eigenfunction

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Coefficient
Click For Summary
The discussion revolves around solving a partial differential equation (PDE) for eigenfunctions, specifically focusing on the coefficients A and B in the eigenfunction expression. The boundary conditions lead to a relationship between A and B, which ultimately suggests that both cannot be zero, as this would yield a trivial solution. The eigenvalues are derived as λ = 4k²π²/L², indicating a dependence on integer k. The resulting solution for the PDE incorporates these eigenvalues and reflects the time dependence of the system. The conversation emphasizes the importance of ensuring that A, B, and λ remain real numbers to avoid trivial solutions.
Dustinsfl
Messages
2,217
Reaction score
5
$$
\varphi(x) = A\cos x\sqrt{\lambda} + B\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}
$$

$$
\text{B.C.} = \begin{cases} u(0,t) = u(L,t)\\u_x(0,t) = u_x(L,t)\end{cases}
$$

Which leads to
$$
A(1 - \cos L\sqrt{\lambda}) = B\frac{\sin L\sqrt{\lambda}}{\sqrt{\lambda}} \quad \text{and} \quad B(1 - \cos L\sqrt{\lambda}) = -A\sqrt{\lambda}\sin L\sqrt{\lambda}
$$

I solved for B and obtained
$$
B = \frac{-A\sqrt{\lambda}\sin L\sqrt{\lambda}}{1 - \cos L\sqrt{\lambda}}.
$$

From this, I can substitute and get
$$
A\left[(1 - \cos L\sqrt{\lambda})^2 - \sin^2 L\sqrt{\lambda}\right] = 0
$$

So can I conclude A = 0? I am having a struggle to find A and B here so I can get the eigenfunction.
 
Physics news on Phys.org
I have a few questions:

1. What is the original PDE?
2. Do you know what the time dependence is?
3. Are there constraints on where $A$, $B$, and $\lambda$ have to be? For example, do they all have to be real numbers?
4. If $A$, $B$, and $\lambda$ have to be real numbers, then you have some interesting things going on:

\begin{align*}AB\left(1-\cos\left(L\sqrt{\lambda}\right)\right)&=B^{2} \, \frac{ \sin\left( L \sqrt{\lambda}\right) }{ \sqrt{\lambda} }\\
AB \left( 1-\cos \left( L \sqrt{ \lambda} \right) \right)&=-A^{2} \sqrt{ \lambda } \sin \left( L \sqrt{ \lambda } \right)\implies
\end{align*}
$$B^{2} \, \frac{ \sin\left( L \sqrt{\lambda}\right) }{ \sqrt{\lambda} }=-A^{2} \sqrt{ \lambda } \sin \left( L \sqrt{ \lambda } \right).$$
This holds if either $\sin\left( L \sqrt{\lambda}\right)=0$ or $B^{2}=-A^{2}|\lambda|$. If the latter is true, then since everything is real, $A=B=0$, and you don't have eigenfunctions because everything is zero.
 
dwsmith said:
... I can substitute and get
$$
A\left[(1 - \cos L\sqrt{\lambda})^2 - \sin^2 L\sqrt{\lambda}\right] = 0
$$
That is correct except that it should be $A\left[(1 - \cos L\sqrt{\lambda})^2 \color{red}{+}\; \sin^2 L\sqrt{\lambda}\right] = 0.$

dwsmith said:
So can I conclude A = 0? I am having a struggle to find A and B here so I can get the eigenfunction.
No, because as Ackbach points out, that would imply that $B$ is also zero, so you get the zero function, which cannot be an eigenfunction. Therefore the only possibility is that $(1 - \cos L\sqrt{\lambda})^2 + \sin^2 L\sqrt{\lambda} = 0.$ Thus $\cos L\sqrt{\lambda} = 1$ and $\sin L\sqrt{\lambda} = 0$ and hence $L\sqrt{\lambda} = 2k\pi$ for some integer $k$. Hence $\lambda = \dfrac{4k^2\pi^2}{L^2}$, and those are the eigenvalues.
 
Opalg said:
That is correct except that it should be $A\left[(1 - \cos L\sqrt{\lambda})^2 \color{red}{+}\; \sin^2 L\sqrt{\lambda}\right] = 0.$


No, because as Ackbach points out, that would imply that $B$ is also zero, so you get the zero function, which cannot be an eigenfunction. Therefore the only possibility is that $(1 - \cos L\sqrt{\lambda})^2 + \sin^2 L\sqrt{\lambda} = 0.$ Thus $\cos L\sqrt{\lambda} = 1$ and $\sin L\sqrt{\lambda} = 0$ and hence $L\sqrt{\lambda} = 2k\pi$ for some integer $k$. Hence $\lambda = \dfrac{4k^2\pi^2}{L^2}$, and those are the eigenvalues.

What is my $\varphi_n$ equation then? Is it the original equation?
So I would have

$$
u(x,t) = \sum_{n=0}^{\infty}a_n\left(\cos x\sqrt{\lambda}+\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}\right)e^{-\lambda t}
$$

---------- Post added at 11:42 ---------- Previous post was at 11:40 ----------

Ackbach said:
I have a few questions:

1. What is the original PDE?
2. Do you know what the time dependence is?
3. Are there constraints on where $A$, $B$, and $\lambda$ have to be? For example, do they all have to be real numbers?
4. If $A$, $B$, and $\lambda$ have to be real numbers, then you have some interesting things going on:

\begin{align*}AB\left(1-\cos\left(L\sqrt{\lambda}\right)\right)&=B^{2} \, \frac{ \sin\left( L \sqrt{\lambda}\right) }{ \sqrt{\lambda} }\\
AB \left( 1-\cos \left( L \sqrt{ \lambda} \right) \right)&=-A^{2} \sqrt{ \lambda } \sin \left( L \sqrt{ \lambda } \right)\implies
\end{align*}
$$B^{2} \, \frac{ \sin\left( L \sqrt{\lambda}\right) }{ \sqrt{\lambda} }=-A^{2} \sqrt{ \lambda } \sin \left( L \sqrt{ \lambda } \right).$$
This holds if either $\sin\left( L \sqrt{\lambda}\right)=0$ or $B^{2}=-A^{2}|\lambda|$. If the latter is true, then since everything is real, $A=B=0$, and you don't have eigenfunctions because everything is zero.

$u_{xx}=u_t$
The BC are above
The IC are
$$
\begin{cases} u(x,0) = 1, & 0 < x < L/4\\
u(x,0) = 0, & L/4 < x < L\end{cases}
$$
 
dwsmith said:
what is my $\varphi_n$ equation then? Is it the original equation?
So i would have

$$
u(x,t) = \sum_{n=0}^{\infty}a_n\left(\cos x\sqrt{\lambda}+\frac{\sin x\sqrt{\lambda}}{\sqrt{\lambda}}\right)e^{-\lambda t}
$$
What you should do here is to substitute $\sqrt\lambda = \dfrac{2n\pi}L$ to get the solution $$
u(x,t) = \sum_{n=0}^{\infty}a_n\left(\cos \tfrac{2n\pi x}L +\tfrac L{2n\pi}\sin \tfrac{2n\pi x}L \right)e^{-4n^2\pi^2 t/L^2}.
$$
 
Opalg said:
What you should do here is to substitute $\sqrt\lambda = \dfrac{2n\pi}L$ to get the solution $$
u(x,t) = \sum_{n=0}^{\infty}a_n\left(\cos \tfrac{2n\pi x}L +\tfrac L{2n\pi}\sin \tfrac{2n\pi x}L \right)e^{-4n^2\pi^2 t/L^2}.
$$

I understand. I was trying to get a handle on $\varphi$.

---------- Post added at 12:00 ---------- Previous post was at 11:53 ----------

How can I contend for the IC?
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 28 ·
Replies
28
Views
4K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 33 ·
2
Replies
33
Views
6K