Complete characterization of local monomials

  • Context: Graduate 
  • Thread starter Thread starter Gaussian97
  • Start date Start date
  • Tags Tags
    Complete Local
Click For Summary
SUMMARY

The discussion centers on proving that if the commutator ##[A(x), j_{\{\lambda\}}(y)]=0## for ##(x-y)^2<0##, then ##A(x)## is a local polynomial. The definitions of ##A(x)## and ##j_{\{\lambda\}}(x)## are provided, with ##A(x)## expressed as a sum involving normal-ordered products of fields. The approach involves using Wick's theorem and properties of commutators to show that the functions ##A_n(x,x_1,\ldots, x_n)## must vanish under certain conditions, leading to the conclusion that they are linear combinations of delta functions and their derivatives, thus confirming that ##A(x)## is indeed a local polynomial.

PREREQUISITES
  • Understanding of Quantum Field Theory (QFT) principles
  • Familiarity with commutators and their properties in QFT
  • Knowledge of Wick's theorem and normal ordering
  • Basic concepts of local polynomials in the context of QFT
NEXT STEPS
  • Study the implications of commutation relations in Quantum Field Theory
  • Learn about the application of Wick's theorem in QFT calculations
  • Explore the concept of local observables and their significance in QFT
  • Investigate the mathematical properties of delta functions and their derivatives
USEFUL FOR

Researchers and students in Quantum Field Theory, theoretical physicists focusing on local observables, and anyone interested in the mathematical foundations of QFT.

Gaussian97
Homework Helper
Messages
683
Reaction score
412
TL;DR
If ##[A(x), j_{\{\lambda\}}(y)]=0## for ##(x-y)^2<0## then ##A(x)## is a local polynomial.
Hi, I'm reading Zavialov's book on QFT and there's a statement there I was interested in finding how to prove it. The statement is as follows:

If ##[A(x), j_{\{\lambda\}}(y)]=0## for ##(x-y)^2<0## then ##A(x)## is a local polynomial.

The relevant definitions are:
$$A = \sum_n \int A_n(x_1,\ldots, x_n) :\phi(x_1)\cdots\phi(x_n): dx_1 \cdots dx_n$$
$$j_{\{\lambda\}}(x)=:\phi_{(\lambda_1)}(x)\cdots \phi_{(\lambda_n)}(x):$$
$$\phi_{(\lambda_1)}(x) = \left(\frac{\partial}{\partial x}\right)^{(\lambda_i)}\phi(x)$$
and a local polynomial is just a linear combination of ##j_{\{\lambda\}}(x)##.

Does anyone have a proof of this fact?

This are the main thoughts I came up trying to prove the statement:

The first thing is that the book does not explicitly define ##A(x)##, but I think it is probably defined by the natural
$$A(x) = \sum_n \int A_n(x,x_1,\ldots, x_n) :\phi(x_1)\cdots\phi(x_n): dx_1 \cdots dx_n$$
From here the first thing I thought was that the commutator ##[A(x), j(y)]## reduces to know the value of the commutators
$$[:\phi(x_1)\cdots \phi(x_n):, j(y)]$$
And since the derivatives can be extracted from the commutator at the end we need to compute
$$[:\phi(x_1)\cdots \phi(x_n):, :\phi(y_1)\cdots \phi(y_m):]$$
Now, using the Wick theorem we can get rid of the normal ordering, and using the relation ##[A,BC]=B[A,C]+[A,B]C##, we should really be able to reduce everything to the commutator ##[A(x), \phi(y)]##. So, either I'm neglecting something important or the assumption ##[A,j]=0 \forall j## seems to be innecesary, just needing ##[A,\phi]=0##, no?

Then we can write the commutators
$$[\phi(x_1)\cdots \phi(x_n), \phi(y)] = \sum_{i=1}^n [\phi(x_i), \phi(y)] \phi(x_1)\cdots\phi(x_{i-1})\phi(x_{i+1})\cdots\phi(x_n)$$

My idea then is trying to prove that this sum cannot vanish unless each particular term vanishes. We know that ##[\phi(x_i), \phi(y)]## vanishes when ##(x_i-y)^2<0## so the condition ##[A,\phi]=0## would imply that the functions ##A_n(x,x_1,\ldots, x_n)## must vanish whenever ##(x_i-y)^2\geq 0##.
Since this must be true for all ##y## such that ##(x-y)^2<0## this implies that ##A_n(x,x_1,\ldots, x_n)## must be zero whenever ##x_i\neq x## and therefore all the functions ##A_n(x,x_1,\ldots, x_n)## would be linear combinations of ##\delta(x-x_i)## and their derivatives. Which would prove that ##A(x)## is a local polynomial.

I don't know if anyone knows if this is the right approach. The part that I think I'm more distant to actually prove (with some rigour) is to prove that indeed the sum cannot be zero unless each individual term, which seems plausible to me. But I have no clue.

If anyone knows the proof or wants to share any thoughts about it, I'd like to hear you.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 0 ·
Replies
0
Views
969
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K