MHB Confusion with variables when solving a recurrence equation

Click For Summary
The discussion revolves around solving a recurrence equation of the form T(n) = T(km) and determining its growth rate. The user is attempting to show that T(n) = Θ(n²) but is confused about the relationship between the variables m and n. They derive a pattern indicating that the leading term is m², yet struggle to connect m, which is dependent on n, to the overall function. A response clarifies that the recurrence relation behaves like a constant sequence for m ≥ 1, suggesting that the user may need to reassess their approach to the problem. Understanding the dependency between m and n is crucial for accurately establishing the growth rate of T(n).
JimmyK
Messages
7
Reaction score
0
If I have a recurrence equation of the following form:

$$T(n) = T(km) = a, m = 1$$
$$T(n) = T(km) = T(k) + T(k(m-1)) + cn, m > 1$$

Where a is simply a constant, and k is an integer constant > 0.

Now I begin substituting to find the pattern:
$$T(k) = a$$
$$T(2k) = a + [a] + c2k$$
$$T(2k) = 2a + 2ck$$
$$T(3k) = a + [2a + 2ck] + c3k$$
$$T(3k) = T(3k) = 3a + 5ck$$
$$T(4k) = a + [3a + 5ck] + c4k$$
$$T(4k) = 4a + 9ck$$

So it looks like the solution is:
$$T(n) = T(mk) = ma + ((\sum\limits_{i=1}^mi)-1)ck$$
$$T(n) = T(mk) = ma + (\frac{m}{2}(m+1)-1)ck$$

Now what I want to do is show that $$T(n) = \Theta(n^{2})$$

I can see in my solution that expanding it out, we end with a leading term of: $$m^{2}$$

Now my problem is, I have myself completely confused due to the variable names. T(n) = T(mk) and then the leading term is m^2, but I want to show that T(n) = Theta(n^2) and I don't think I've fully shown that because while m is dependent on n, it's not n. Any explanation of how I go about relating the two would be appreciated.
 
Physics news on Phys.org
marobin said:
If I have a recurrence equation of the following form:

$$T(n) = T(km) = a, m = 1$$
$$T(n) = T(km) = T(k) + T(k(m-1)) + cn, m > 1$$

Where a is simply a constant, and k is an integer constant > 0.

Now I begin substituting to find the pattern:
$$T(k) = a$$
$$T(2k) = a + [a] + c2k$$
$$T(2k) = 2a + 2ck$$
$$T(3k) = a + [2a + 2ck] + c3k$$
$$T(3k) = T(3k) = 3a + 5ck$$
$$T(4k) = a + [3a + 5ck] + c4k$$
$$T(4k) = 4a + 9ck$$

So it looks like the solution is:
$$T(n) = T(mk) = ma + ((\sum\limits_{i=1}^mi)-1)ck$$
$$T(n) = T(mk) = ma + (\frac{m}{2}(m+1)-1)ck$$

Now what I want to do is show that $$T(n) = \Theta(n^{2})$$

I can see in my solution that expanding it out, we end with a leading term of: $$m^{2}$$

Now my problem is, I have myself completely confused due to the variable names. T(n) = T(mk) and then the leading term is m^2, but I want to show that T(n) = Theta(n^2) and I don't think I've fully shown that because while m is dependent on n, it's not n. Any explanation of how I go about relating the two would be appreciated.

Hi marobin, :)

It seems that your recurrence relation is in fact a constant sequence since \(T(n) = T(km)=a\mbox{ for }m\geq 1\).

Kind Regards,
Sudharaka.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 22 ·
Replies
22
Views
5K