A Curvature & Connection Without Metric

Click For Summary
In the absence of a metric, raising and lowering indices becomes impossible, complicating the understanding of Christoffel symbols. There are two types of Christoffel symbols: the first kind, which are in component notation, and the second kind, which relate to connections between covectors. The relationship between these symbols highlights their roles in vector and covector connections, with the connection coefficients defined in terms of a vector bundle. The curvature tensor, denoted as ##R^a{}_{bcd}##, is uniquely defined through a specific formula involving the covariant derivative. Overall, discussing curvature and connections without a metric presents challenges in differential geometry.
pervect
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
10,420
Reaction score
1,593
In the absence of a metric, we can not raise and lower indices at will.

There are two sorts of Christoffel symbols, Christoffels of the first kind, ##\Gamma^a{}_{bc}## in component notation, and Christoffel symbols of the second kind, ##\Gamma_{abc}##. What's the relationship between the two kinds of Christoffel symbols? Is perhaps one of them a connection betwen vectors, and the other a connection between covectors?

Similarly, is ##R^a{}_{bcd}## "the" curvature tensor?

I suppose it'd be better to express this in terms of geometry rather than components, but I'm struggling a bit to do that.

This is all very basic, but I'm just not used to thinking about differential geometry without a metric :(.
 
Physics news on Phys.org
Typically the nomenclature ”Christoffel symbols” is generally reserved for the connection coefficients of the Levi-Civita connection. As such, they don't really hold meaning outside of a Riemannian or pseudo-Riemannian manifold.

The more general concept of connection coefficients ##\Gamma_{\mu i}^j## relate to the connection on a vector bundle where I have written the fiber indices with Latin letters. Choosing a basis ##E_i## for the fiber, the connection coefficients are defined by
$$
\nabla_\mu E_i = \Gamma_{\mu i}^j E_j.
$$
For a the tangent bundle, the indices are the same as the indices of the base manifold itself and you would write ##\Gamma_{\mu\nu}^\lambda## etc. (So if you don't want to think about general vector bundle, just replace ##i## and ##j## by Greek letters.)

The corresponding connection on the dual bundle is found by using a basis ##E^i## with the property ##E^i\cdot E_j = \delta^i_j##. From this follows that
$$
0 = \nabla_\mu (E^i \cdot E_j) = E^i \cdot \Gamma_{\mu j}^k E_k + (\nabla_\mu E^i)\cdot E_j = \Gamma_{\mu j}^i + (\nabla_\mu E^i)\cdot E_j
$$
leading to
$$
(\nabla_\mu E^i)\cdot E_j = -\Gamma_{\mu j}^i.
$$
In other words, the connection coefficients on the dual bundle is the same as those on the vector bundle with opposite sign.

As for the curvature tensor, it is uniquely defined by
$$
R(X,Y) A = \nabla_X \nabla_Y A - \nabla_Y \nabla_X A - \nabla_{[X,Y]} A,
$$
where ##X## and ##Y## are in the tangent space and ##A## in the fiber.
 
  • Like
Likes vanhees71, pervect and dextercioby
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

Replies
24
Views
2K
Replies
19
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
7
Views
2K
Replies
14
Views
7K
  • · Replies 6 ·
Replies
6
Views
6K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 7 ·
Replies
7
Views
538