A Curvature & Connection Without Metric

pervect
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
10,396
Reaction score
1,573
In the absence of a metric, we can not raise and lower indices at will.

There are two sorts of Christoffel symbols, Christoffels of the first kind, ##\Gamma^a{}_{bc}## in component notation, and Christoffel symbols of the second kind, ##\Gamma_{abc}##. What's the relationship between the two kinds of Christoffel symbols? Is perhaps one of them a connection betwen vectors, and the other a connection between covectors?

Similarly, is ##R^a{}_{bcd}## "the" curvature tensor?

I suppose it'd be better to express this in terms of geometry rather than components, but I'm struggling a bit to do that.

This is all very basic, but I'm just not used to thinking about differential geometry without a metric :(.
 
Physics news on Phys.org
Typically the nomenclature ”Christoffel symbols” is generally reserved for the connection coefficients of the Levi-Civita connection. As such, they don't really hold meaning outside of a Riemannian or pseudo-Riemannian manifold.

The more general concept of connection coefficients ##\Gamma_{\mu i}^j## relate to the connection on a vector bundle where I have written the fiber indices with Latin letters. Choosing a basis ##E_i## for the fiber, the connection coefficients are defined by
$$
\nabla_\mu E_i = \Gamma_{\mu i}^j E_j.
$$
For a the tangent bundle, the indices are the same as the indices of the base manifold itself and you would write ##\Gamma_{\mu\nu}^\lambda## etc. (So if you don't want to think about general vector bundle, just replace ##i## and ##j## by Greek letters.)

The corresponding connection on the dual bundle is found by using a basis ##E^i## with the property ##E^i\cdot E_j = \delta^i_j##. From this follows that
$$
0 = \nabla_\mu (E^i \cdot E_j) = E^i \cdot \Gamma_{\mu j}^k E_k + (\nabla_\mu E^i)\cdot E_j = \Gamma_{\mu j}^i + (\nabla_\mu E^i)\cdot E_j
$$
leading to
$$
(\nabla_\mu E^i)\cdot E_j = -\Gamma_{\mu j}^i.
$$
In other words, the connection coefficients on the dual bundle is the same as those on the vector bundle with opposite sign.

As for the curvature tensor, it is uniquely defined by
$$
R(X,Y) A = \nabla_X \nabla_Y A - \nabla_Y \nabla_X A - \nabla_{[X,Y]} A,
$$
where ##X## and ##Y## are in the tangent space and ##A## in the fiber.
 
  • Like
Likes vanhees71, pervect and dextercioby
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top