Derivation of two-electron density operator

Click For Summary

Discussion Overview

The discussion revolves around the derivation of the two-electron density operator, specifically focusing on understanding a particular term in the equation (2.11a) that is intended to eliminate the i=j products. Participants are seeking clarification on the mathematical steps involved in this derivation.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant expresses difficulty in understanding how the second term in equation (2.11a) is derived, particularly its role in eliminating the i=j products.
  • Another participant questions the context of the second equality in (2.11a), suggesting it may imply a special state of uncorrelated or free particles.
  • A participant presents a mathematical approach involving delta functions, discussing how to handle terms where i=j and proposing identities related to delta functions to rewrite the expression.
  • There is a reiteration of the mathematical reasoning involving delta functions and integrals, with assumptions made about the identities used in the derivation.
  • One participant acknowledges the help received but does not provide a definitive conclusion on the derivation process.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus on the derivation process, with multiple viewpoints and uncertainties expressed regarding the mathematical steps and interpretations involved.

Contextual Notes

Participants reference specific mathematical identities and assumptions that may not be universally accepted or clearly defined, indicating potential limitations in the discussion.

Mart1234
Messages
6
Reaction score
0
TL;DR
Derivation of two electron density operator using single electron density operator
Hello, I am going over the derivation for two-electron density. I am having a hard time understanding how the second term in 2.11a seen below is derived. I know this term must eliminate the i=j products but can't seem to understand how. Thanks for the help.
1677185633960.png
 

Attachments

  • 1677185491730.png
    1677185491730.png
    18.1 KB · Views: 174
Physics news on Phys.org
Where is this coming from? The 2nd equality of (2.11a) seems to indicate that you consider a special state of uncorrelated/free particles, but we need more context to make sense of it.
 
I've never seen the two-electron density written like that. Here are my thoughts but I can't say for sure.

Mart1234 said:
I know this term must eliminate the i=j products but can't seem to understand how.
Considering the terms where ##i=j## $$\sum_{i}\delta(\mathbf r-\mathbf r_i)\delta(\mathbf r' - \mathbf r_i)$$We should be able to use the identities ##\delta(x - y) = \delta(y - x)## and ##\int dy \delta(x-y)\delta(y-x') = \delta(x-x')## So we rewrite the above as $$\sum_{i}\delta(\mathbf r-\mathbf r_i)\delta(\mathbf r_i - \mathbf r')$$ and when we are computing the electron density function we will be integrating over ##\mathbf r_i## so the latter identity suggests $$\sum_i\int d\mathbf r_1\dots d\mathbf r_N \delta(\mathbf r - \mathbf r_i)\delta(\mathbf r_i - \mathbf r')|\Psi(\mathbf r_1,\dots, \mathbf r_N)|^2 = N\int d\mathbf r_2\dots d\mathbf r_N \delta(\mathbf r - \mathbf r')|\Psi(\mathbf r,\dots, \mathbf r_N)|^2$$For the last line. I am assuming $$\int dx\int dy \delta(x-y)\delta(y-x')f(y) = \int dx \delta(x-x')f(x)$$
 
Last edited:
  • Like
Likes   Reactions: vanhees71
Morbert said:
I've never seen the two-electron density written like that. Here are my thoughts but I can't say for sure.Considering the terms where ##i=j## $$\sum_{i}\delta(\mathbf r-\mathbf r_i)\delta(\mathbf r' - \mathbf r_i)$$We should be able to use the identities ##\delta(x - y) = \delta(y - x)## and ##\int dy \delta(x-y)\delta(y-x') = \delta(x-x')## So we rewrite the above as $$\sum_{i}\delta(\mathbf r-\mathbf r_i)\delta(\mathbf r_i - \mathbf r')$$ and when we are computing the electron density function we will be integrating over ##\mathbf r_i## so the latter identity suggests $$\sum_i\int d\mathbf r_1\dots d\mathbf r_N \delta(\mathbf r - \mathbf r_i)\delta(\mathbf r_i - \mathbf r')|\Psi(\mathbf r_1,\dots, \mathbf r_N)|^2 = N\int d\mathbf r_2\dots d\mathbf r_N \delta(\mathbf r - \mathbf r')|\Psi(\mathbf r,\dots, \mathbf r_N)|^2$$For the last line. I am assuming $$\int dx\int dy \delta(x-y)\delta(y-x')f(y) = \int dx \delta(x-x')f(x)$$

Morbert said:
I've never seen the two-electron density written like that. Here are my thoughts but I can't say for sure.Considering the terms where ##i=j## $$\sum_{i}\delta(\mathbf r-\mathbf r_i)\delta(\mathbf r' - \mathbf r_i)$$We should be able to use the identities ##\delta(x - y) = \delta(y - x)## and ##\int dy \delta(x-y)\delta(y-x') = \delta(x-x')## So we rewrite the above as $$\sum_{i}\delta(\mathbf r-\mathbf r_i)\delta(\mathbf r_i - \mathbf r')$$ and when we are computing the electron density function we will be integrating over ##\mathbf r_i## so the latter identity suggests $$\sum_i\int d\mathbf r_1\dots d\mathbf r_N \delta(\mathbf r - \mathbf r_i)\delta(\mathbf r_i - \mathbf r')|\Psi(\mathbf r_1,\dots, \mathbf r_N)|^2 = N\int d\mathbf r_2\dots d\mathbf r_N \delta(\mathbf r - \mathbf r')|\Psi(\mathbf r,\dots, \mathbf r_N)|^2$$For the last line. I am assuming $$\int dx\int dy \delta(x-y)\delta(y-x')f(y) = \int dx \delta(x-x')f(x)$$
Got it. I appreciate the help.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K