Determine the last three digits of the number ## 7^{999} ##

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The last three digits of the number 7^999 are determined to be 143 through modular arithmetic. The calculation involves using the property that 7^(4n) is congruent to 1 + 400n modulo 1000, derived from the binomial theorem. This simplification allows for the expression of 7^999 as (1 + 400*249) * 7^3 modulo 1000. The final multiplication yields 601 * 343, which simplifies to 143 when taken modulo 1000. The discussion also clarifies why (1 + 400)^n is congruent to 1 + 400n modulo 1000, emphasizing the role of higher-order terms being zero in this context.
Math100
Messages
813
Reaction score
229
Homework Statement
Determine the last three digits of the number ## 7^{999} ##.
[Hint: ## 7^{4n}\equiv (1+400)^{n}\equiv 1+400n\pmod {1000} ##.]
Relevant Equations
None.
Observe that ## 7^{4n}\equiv (7^{4})^{n}\equiv (401)^{n}\equiv (1+400)^{n}\equiv 1+400n\pmod {1000} ##.
Thus
\begin{align*}
&7^{999}\equiv [(7^{4})^{249}\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+400\cdot 249)\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+99600)\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+600)\cdot 7^{3}]\pmod {1000}\\
&\equiv (601\cdot 343)\pmod {1000}\\
&\equiv 206143\pmod {1000}\\
&\equiv 143\pmod {1000}.\\
\end{align*}
Therefore, the last three digits of the number ## 7^{999} ## are ## 143 ##.
 
Physics news on Phys.org
Yes, right. Just one question: Why is ##(1+400)^n\equiv 1+400 n \pmod{1000}?##
 
fresh_42 said:
Yes, right. Just one question: Why is ##(1+400)^n\equiv 1+400 n \pmod{1000}?##
I was thinking about it but I don't know. Can you tell me why?
 
Math100 said:
I was thinking about it but I don't know. Can you tell me why?
Yes, it is the binomial formula.
\begin{align*}
(x+y)^n &=\sum_{k=0}^n\binom{n}{k}x^{n-k}y^k\\&=x^n+n\cdot x^{n-1}y+ \dfrac{n(n-1)}{2!}x^{n-2}y^2+\ldots+\dfrac{n(n-1)}{2!}x^{2}y^{n-2}+n\cdot xy^{n-1} +y^n\\[10pt]
(1+400)^n&=1+n\cdot 1^{n-1}\cdot 400+\dfrac{n(n-1)}{2!}\cdot x^{n-2}\cdot 400^2+\ldots + n\cdot 1\cdot 400^{n-1}+400^n
\end{align*}
Now, look at the zeros. After ##1+400n## are always at least four of them in each term. So they do not contribute anything modulo ##1000.##

The coefficients ##1, n, \dfrac{n(n-1)}{2!},\dfrac{n(n-1)(n-2)}{3!},\ldots ## are the numbers in Pascal's triangle.
 
  • Like
  • Informative
Likes Janosh89, Delta2, dextercioby and 2 others
Back
Top