Determine the last three digits of the number ## 7^{999} ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The last three digits of the number 7999 are conclusively determined to be 143. This result is derived using modular arithmetic, specifically 74n ≡ (74)n ≡ (401)n ≡ 1 + 400n (mod 1000). The calculation proceeds through the expression 7999 ≡ [(1 + 400·249)·73](mod 1000), simplifying to 601·343 (mod 1000), which ultimately yields 143. The discussion also clarifies the application of the binomial theorem in this context.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with the binomial theorem
  • Knowledge of Pascal's triangle
  • Basic exponentiation techniques
NEXT STEPS
  • Study modular exponentiation techniques
  • Explore advanced applications of the binomial theorem
  • Learn about Pascal's triangle and its properties
  • Investigate further examples of modular arithmetic in number theory
USEFUL FOR

Mathematicians, students studying number theory, educators teaching modular arithmetic, and anyone interested in advanced mathematical concepts.

Math100
Messages
817
Reaction score
230
Homework Statement
Determine the last three digits of the number ## 7^{999} ##.
[Hint: ## 7^{4n}\equiv (1+400)^{n}\equiv 1+400n\pmod {1000} ##.]
Relevant Equations
None.
Observe that ## 7^{4n}\equiv (7^{4})^{n}\equiv (401)^{n}\equiv (1+400)^{n}\equiv 1+400n\pmod {1000} ##.
Thus
\begin{align*}
&7^{999}\equiv [(7^{4})^{249}\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+400\cdot 249)\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+99600)\cdot 7^{3}]\pmod {1000}\\
&\equiv [(1+600)\cdot 7^{3}]\pmod {1000}\\
&\equiv (601\cdot 343)\pmod {1000}\\
&\equiv 206143\pmod {1000}\\
&\equiv 143\pmod {1000}.\\
\end{align*}
Therefore, the last three digits of the number ## 7^{999} ## are ## 143 ##.
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
Yes, right. Just one question: Why is ##(1+400)^n\equiv 1+400 n \pmod{1000}?##
 
  • Like
Likes   Reactions: Delta2
fresh_42 said:
Yes, right. Just one question: Why is ##(1+400)^n\equiv 1+400 n \pmod{1000}?##
I was thinking about it but I don't know. Can you tell me why?
 
  • Like
Likes   Reactions: Delta2
Math100 said:
I was thinking about it but I don't know. Can you tell me why?
Yes, it is the binomial formula.
\begin{align*}
(x+y)^n &=\sum_{k=0}^n\binom{n}{k}x^{n-k}y^k\\&=x^n+n\cdot x^{n-1}y+ \dfrac{n(n-1)}{2!}x^{n-2}y^2+\ldots+\dfrac{n(n-1)}{2!}x^{2}y^{n-2}+n\cdot xy^{n-1} +y^n\\[10pt]
(1+400)^n&=1+n\cdot 1^{n-1}\cdot 400+\dfrac{n(n-1)}{2!}\cdot x^{n-2}\cdot 400^2+\ldots + n\cdot 1\cdot 400^{n-1}+400^n
\end{align*}
Now, look at the zeros. After ##1+400n## are always at least four of them in each term. So they do not contribute anything modulo ##1000.##

The coefficients ##1, n, \dfrac{n(n-1)}{2!},\dfrac{n(n-1)(n-2)}{3!},\ldots ## are the numbers in Pascal's triangle.
 
  • Like
  • Informative
Likes   Reactions: Janosh89, Delta2, dextercioby and 2 others

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
3K