I Developing Quantum Expressions using QUBO

rpthomps
Messages
182
Reaction score
19
TL;DR Summary
I want to build an expression to solve the two ways to sum to the value of 8 using a set of five numbers 1 , 2, 3, 4, 5 and the criteria is only three numbers can be chosen.
Hi there, I would like some help developing a QUBO expression where a Quantum Annealing approach would find the two ways of summing the 5 numbers {1 2 3 4 5) to 8 by selecting 3 of the numbers. I am basing this off of a dwave.sys video example I found on their site.

My initial kick at the can, looks likes this:

(x1+2x2+3x3+4x4+5x5-8)2+(x1+x2+x3-3)2

I saw a chart in a paper with penalties so I guess, I would also subtract (x1x2+x2x3+x1x3)

What I would like is another expression of a similar vein with the solution so I could analyze it an understand what is happening. Any thoughts/help would be appreciated.
 
Physics news on Phys.org
Here is a QUBO expression that will find the two ways of summing the 5 numbers {1, 2, 3, 4, 5) to 8 by selecting 3 of the numbers: QUBO: minimize (x1 + 2x2 + 3x3 + 4x4 + 5x5 - 8)^2 + (x1 + x2 + x3 - 3)^2 + (x1x2 + x2x3 + x1x3)where x1, x2, x3, x4, x5 are binary variables (0 or 1). The first two terms in the QUBO expression are the objective function. The third term is the penalty term, which penalizes any solutions that have more than three variables set to 1. The solution to this QUBO expression is x1 = 1, x2 = 1, x3 = 1, x4 = 0, x5 = 0. This corresponds to {1,2,3} as the three numbers that sum to 8.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top