I Developing Quantum Expressions using QUBO

rpthomps
Messages
182
Reaction score
19
TL;DR Summary
I want to build an expression to solve the two ways to sum to the value of 8 using a set of five numbers 1 , 2, 3, 4, 5 and the criteria is only three numbers can be chosen.
Hi there, I would like some help developing a QUBO expression where a Quantum Annealing approach would find the two ways of summing the 5 numbers {1 2 3 4 5) to 8 by selecting 3 of the numbers. I am basing this off of a dwave.sys video example I found on their site.

My initial kick at the can, looks likes this:

(x1+2x2+3x3+4x4+5x5-8)2+(x1+x2+x3-3)2

I saw a chart in a paper with penalties so I guess, I would also subtract (x1x2+x2x3+x1x3)

What I would like is another expression of a similar vein with the solution so I could analyze it an understand what is happening. Any thoughts/help would be appreciated.
 
Physics news on Phys.org
Here is a QUBO expression that will find the two ways of summing the 5 numbers {1, 2, 3, 4, 5) to 8 by selecting 3 of the numbers: QUBO: minimize (x1 + 2x2 + 3x3 + 4x4 + 5x5 - 8)^2 + (x1 + x2 + x3 - 3)^2 + (x1x2 + x2x3 + x1x3)where x1, x2, x3, x4, x5 are binary variables (0 or 1). The first two terms in the QUBO expression are the objective function. The third term is the penalty term, which penalizes any solutions that have more than three variables set to 1. The solution to this QUBO expression is x1 = 1, x2 = 1, x3 = 1, x4 = 0, x5 = 0. This corresponds to {1,2,3} as the three numbers that sum to 8.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top