Do I have to use n = 4 in the formula?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Formula
Click For Summary
SUMMARY

The discussion centers on calculating the number of ways 8 people can exit an elevator with 5 floors, given that no one exits on the first floor. The correct formula used is x1 + x2 + x3 + x4 = 8, leading to the combinatorial expression \binom{4+8-1}{8}. The initial incorrect calculation of 495 was clarified to be 165, which is the accurate result for this scenario.

PREREQUISITES
  • Understanding of combinatorial mathematics
  • Familiarity with the stars and bars theorem
  • Knowledge of binomial coefficients
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the stars and bars theorem in combinatorics
  • Learn about binomial coefficients and their applications
  • Explore combinatorial problems involving constraints
  • Practice solving similar problems with varying conditions
USEFUL FOR

Mathematicians, students studying combinatorics, educators teaching probability and statistics, and anyone interested in solving combinatorial problems.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
We have an elevator with 8 people and 5 floors.With how may ways can these 8 people get out of the elevator,when we know that at the first floor no one gets out?
I used the formula x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=8 ,where x_{1}=0.So,it is \binom{n+k-1}{k}=\binom{4+8-1}{8}=\binom{11}{8}=495 ,right?Or do I have to replace n with 5?Because,the formula is satisfied for x_{i} \geq 0 ..
 
Physics news on Phys.org
Re: Do I have to use n=4 at the formula?

evinda said:
We have an elevator with 8 people and 5 floors.With how may ways can these 8 people get out of the elevator,when we know that at the first floor no one gets out?
I used the formula x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=8 ,where x_{1}=0.So,it is \binom{n+k-1}{k}=\binom{4+8-1}{8}=\binom{11}{8}=495 ,right?Or do I have to replace n with 5?Because,the formula is satisfied for x_{i} \geq 0 ..

You can reduce the problem to 8 people for which you pick 1 of 4 floors.
So x_{1}+x_{2}+x_{3}+x_{4}=8, meaning we indeed have $\binom{4+8-1}{8}$.
There is one problem though... $\binom{4+8-1}{8} \ne 495$... :eek:
 
Re: Do I have to use n=4 at the formula?

I like Serena said:
There is one problem though... $\binom{4+8-1}{8} \ne 495$... :eek:

Oh,yes..I am sorry! :o 495 was the result of an other subquestion and I wrote it accidentally.The result of the question I asked is 165 ;)

- - - Updated - - -

I like Serena said:
You can reduce the problem to 8 people for which you pick 1 of 4 floors.
So x_{1}+x_{2}+x_{3}+x_{4}=8, meaning we indeed have $\binom{4+8-1}{8}$.

Thanks a lot!
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 0 ·
Replies
0
Views
964
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K