Undergrad Do neutral atom collisions affect the continuous nature of black body radiation?

Click For Summary
Neutral atom collisions can indeed shift the eigenfunctions during interactions and create temporary dipoles due to van der Waals forces. When atoms come close, their internal motion eigenstates can change, affecting energy levels relative to isolated atoms. In certain cases, atoms may form bound states, complicating the wave function representation. This interaction contributes to the continuous distribution of energy observed in black body radiation for monoatomic nonionized substances. Overall, these collision dynamics play a significant role in understanding the nature of black body radiation.
Getterdog
Messages
83
Reaction score
6
I’ve read everything I can here and in the stack exchange on the topic of the continuous nature of black body radiation and it’s been really helpful,but I’m lead now to this question. Do neutral atom collisions shift the eigenfunctions,during the collisions? Do collisions create temporary dipoles? I’m Assuming no free electrons,just collisions in neutral atoms.thanks jk
 
Physics news on Phys.org
I assume by not free you are regarding an electron as belonging to some atom or another. In an interaction it is not so clear cut.
 
Getterdog said:
Do neutral atom collisions shift the eigenfunctions,during the collisions? Do collisions create temporary dipoles?
Yes to both. The van der Waals interaction leads to the polarisation of two atoms that are not too far from each other. This can be seen as shifting the energy levels with respect to the isolated atom.
 
  • Like
Likes bhobba
Getterdog said:
I’ve read everything I can here and in the stack exchange on the topic of the continuous nature of black body radiation and it’s been really helpful,but I’m lead now to this question. Do neutral atom collisions shift the eigenfunctions,during the collisions? Do collisions create temporary dipoles? I’m Assuming no free electrons,just collisions in neutral atoms.thanks jk

In some collisions we can think of the wave function of the two-atom system as a product of the wave function for the internal motion in the atoms (relative position of electrons w.r.t. the nuclei) and a wave function for the center of mass motion of the atoms. Then you can model the collision in a way where the internal motion eigenstates change temporarily when the atoms get close enough to interact. In some other cases the two atoms can form a bound state, as in the recombination of two chlorine atoms to form a ##Cl_2## molecule - then you can't write the final state wavefunction in the same way as a combination of separate atoms because there's a covalent bond formed.
 
hilbert2 said:
In some collisions we can think of the wave function of the two-atom system as a product of the wave function for the internal motion in the atoms (relative position of electrons w.r.t. the nuclei) and a wave function for the center of mass motion of the atoms. Then you can model the collision in a way where the internal motion eigenstates change temporarily when the atoms get close enough to interact. In some other cases the two atoms can form a bound state, as in the recombination of two chlorine atoms to form a ##Cl_2## molecule - then you can't write the final state wavefunction in the same way as a combination of separate atoms because there's a covalent bond formed.
Does this then account for the more or less continuous distribution of energy for a monoatomic nonionized substance? Thanks jk
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 47 ·
2
Replies
47
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
6K
  • · Replies 4 ·
Replies
4
Views
15K
  • · Replies 71 ·
3
Replies
71
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K