I Do neutral atom collisions affect the continuous nature of black body radiation?

Getterdog
Messages
83
Reaction score
6
I’ve read everything I can here and in the stack exchange on the topic of the continuous nature of black body radiation and it’s been really helpful,but I’m lead now to this question. Do neutral atom collisions shift the eigenfunctions,during the collisions? Do collisions create temporary dipoles? I’m Assuming no free electrons,just collisions in neutral atoms.thanks jk
 
Physics news on Phys.org
I assume by not free you are regarding an electron as belonging to some atom or another. In an interaction it is not so clear cut.
 
Getterdog said:
Do neutral atom collisions shift the eigenfunctions,during the collisions? Do collisions create temporary dipoles?
Yes to both. The van der Waals interaction leads to the polarisation of two atoms that are not too far from each other. This can be seen as shifting the energy levels with respect to the isolated atom.
 
  • Like
Likes bhobba
Getterdog said:
I’ve read everything I can here and in the stack exchange on the topic of the continuous nature of black body radiation and it’s been really helpful,but I’m lead now to this question. Do neutral atom collisions shift the eigenfunctions,during the collisions? Do collisions create temporary dipoles? I’m Assuming no free electrons,just collisions in neutral atoms.thanks jk

In some collisions we can think of the wave function of the two-atom system as a product of the wave function for the internal motion in the atoms (relative position of electrons w.r.t. the nuclei) and a wave function for the center of mass motion of the atoms. Then you can model the collision in a way where the internal motion eigenstates change temporarily when the atoms get close enough to interact. In some other cases the two atoms can form a bound state, as in the recombination of two chlorine atoms to form a ##Cl_2## molecule - then you can't write the final state wavefunction in the same way as a combination of separate atoms because there's a covalent bond formed.
 
hilbert2 said:
In some collisions we can think of the wave function of the two-atom system as a product of the wave function for the internal motion in the atoms (relative position of electrons w.r.t. the nuclei) and a wave function for the center of mass motion of the atoms. Then you can model the collision in a way where the internal motion eigenstates change temporarily when the atoms get close enough to interact. In some other cases the two atoms can form a bound state, as in the recombination of two chlorine atoms to form a ##Cl_2## molecule - then you can't write the final state wavefunction in the same way as a combination of separate atoms because there's a covalent bond formed.
Does this then account for the more or less continuous distribution of energy for a monoatomic nonionized substance? Thanks jk
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top