I Does the generalized gamma distribution have a mgf?

  • I
  • Thread starter Thread starter psie
  • Start date Start date
  • Tags Tags
    Probability theory
psie
Messages
315
Reaction score
40
TL;DR Summary
I'm reading An Intermediate Course in Probability by Gut. I am confused about a statement made concerning the generalized gamma distribution and its existence of a moment generating function.
I quote from An Intermediate Course in Probability by Gut:

Another class of distributions that possesses moments of all orders but not a moment generating function is the class of generalized gamma distributions whose densities are $$f(x)=Cx^{\beta-1}e^{-x^{\alpha}},\quad x>0,\tag1$$where ##\beta>-1##, ##0<\alpha<1##, and ##C## is a normalization constant (that is chosen such that the total mass equals ##1##).

It is clear that all moments exist, but, since ##\alpha<1##, we have $$\int_{-\infty}^\infty e^{tx}x^{\beta-1}e^{-x^\alpha}\, dx=\infty\tag2$$ for all ##t>0##, so that the moment generating function does not exist.

First, I don't think it is clear that all moments exist. Integrating ##(1)## and making the substitution ##y=x^\alpha##, and rewriting the integral in terms of a gamma integral, I get that ##C=\Gamma(\beta/\alpha)##. The only condition I get is ##\beta/\alpha>0##, so I don't see that the restriction ##\beta>-1## makes sense. I also don't see why ##\alpha<1## would make sense. Does anyone know what the proper bounds should be on ##\alpha## and ##\beta##? In view of my finding that ##\beta/\alpha>0##, I don't see why they both could be negative too.

Second, with the observations made above, does the moment generating function exist?
 
Last edited:
Physics news on Phys.org
I think the correct ##C## should be ##\alpha/\Gamma(\beta/\alpha)##. And ##\beta>-1## actually makes sense if we want all moments to exist. Moreover, ##0<\alpha<1## is only specified I think to show this is when the integral diverges.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
4
Views
1K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
16
Views
2K
Replies
14
Views
2K
Replies
6
Views
2K
Back
Top