I Einstein field equations

PhysicsEnjoyer31415
Gold Member
Messages
65
Reaction score
33
TL;DR Summary
I am still in high school but can someone explain these to me in short detail . I know what tensors are and i can solve Basic Inertia tensor matrices to find torque without official education on it . What do i need to do in order to learn these equations and understand them exactly.(Time is not a concern for me right now ) .Any video suggestions or books?or anything will be helpful .Please also explain what the symbols mean .Thanks
0_xmwb3PtcCMhBLDxl.png
 
Physics news on Phys.org
Start with special relativity. All treatments of general relativity will assume you understand special relativity. Then make sure you know calculus, including differential equations and partial differentiation. And linear algebra generally.

Taylor and Wheeler's Spacetime Physics is free to download from Taylor's website, and should be in reach for a sufficiently motivated high school student.

A former mentor here, Ben Crowell, wrote a book called Relativity for Poets, which is downloadable via www.lightandmatter.com. It's a non-mathematical treatment, and about as good as you can get without maths.

Regarding the field equations, roughly speaking ##G_{ab}## describes the curvature of spacetime. ##\Lambda g_{ab}## describes the contribution of the cosmological constant, and is sometimes rolled into the term on the right. ##T_{ab}## is the stress-energy tensor, which describes all the energy (including mass) terms that are sources of gravity.
 
  • Like
Likes PhysicsEnjoyer31415
  • Like
Likes PhysicsEnjoyer31415 and Ibix
PhysicsEnjoyer31415 said:
What do i need to do in order to learn these equations and understand them exactly.(Time is not a concern for me right now ) .Any video suggestions or books?or anything will be helpful .Please also explain what the symbols mean .Thanks

View attachment 345799
It's unlikely that a particular video or book suggestion will happen to hit the "sweet spot" for you. This video might be too elementary. It builds up to Einstein's equation with interesting historical commentary. It also discusses the meaning of the symbols in the equation, but not in much depth.

Einstein's equation in the video does not contain the term ##\Lambda g_{\mu \nu}##. The ##G_{\mu \nu}## in your equation represents all of the left-hand side of Einstein's equation in the video.
 
  • Like
Likes PhysicsEnjoyer31415
Thank you people👍
 
  • Like
Likes berkeman and PeterDonis
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...
Back
Top