Entanglement and pair-production and annihilation

Click For Summary
SUMMARY

This discussion centers on the concepts of quantum entanglement and pair production, specifically involving electron-positron pairs and their interactions with photons. It is established that when a photon produces an electron-positron pair, the particles are spin-entangled, conserving the total spin. Upon annihilation, the entangled pair produces a photon with the same spin. The conversation also highlights the lack of consensus in the physics community regarding the interpretation of entanglement, with many adopting an agnostic view on the underlying mechanisms connecting entangled particles.

PREREQUISITES
  • Understanding of quantum mechanics principles
  • Familiarity with particle physics terminology
  • Knowledge of spin conservation laws
  • Basic concepts of photon interactions
NEXT STEPS
  • Research the principles of quantum entanglement in detail
  • Explore the concept of spin in quantum mechanics
  • Study the various interpretations of quantum mechanics, focusing on entanglement
  • Investigate the mechanisms of pair production and annihilation in particle physics
USEFUL FOR

Students and enthusiasts of quantum mechanics, physicists exploring particle interactions, and anyone interested in the foundational concepts of quantum entanglement and its interpretations.

HAYAO
Science Advisor
Gold Member
Messages
379
Reaction score
238
I am confused about entanglement, but I am not a physicist. The concept sounds cool and I want to understand in a way so that it is familiar with what I already know. I want to know if I am interpreting this right:

1) If we have a photon that produces a pair of electron and positron, the electron and the positron is spin entangled after the production. The total spin of the produced pair of particles are the same as the spin of the photon due to spin-conservation.

2) Likewise, if we have a spin-entangled electron and positron with a particular total spin, and is annihilated, it will produce a photon of the same spin.

3) If we have non-entangled electron and positron, then a photon will be produced with a spin of statistical probability depending on the spin of electron and positron before annihilation.

Is any, or all of them wrong?

Also, how are entanglement interpreted in the community of physics? For example, if we have an entangled electron-positron pair, is there some sort of interaction intermediate linking the electron and the positron when one of them is measured for z-projection of the spin so that it automatically determines the z-projection of the spin of the other particle? Or do they have rather agnostic view of how the two particles are entangled ("don't know how but it does" attitude)?
 
Physics news on Phys.org
HAYAO said:
I am confused about entanglement, but I am not a physicist. The concept sounds cool and I want to understand in a way so that it is familiar with what I already know. I want to know if I am interpreting this right:

1) If we have a photon that produces a pair of electron and positron, the electron and the positron is spin entangled after the production. The total spin of the produced pair of particles are the same as the spin of the photon due to spin-conservation.

2) Likewise, if we have a spin-entangled electron and positron with a particular total spin, and is annihilated, it will produce a photon of the same spin.

3) If we have non-entangled electron and positron, then a photon will be produced with a spin of statistical probability depending on the spin of electron and positron before annihilation.

Is any, or all of them wrong?

Also, how are entanglement interpreted in the community of physics? For example, if we have an entangled electron-positron pair, is there some sort of interaction intermediate linking the electron and the positron when one of them is measured for z-projection of the spin so that it automatically determines the z-projection of the spin of the other particle? Or do they have rather agnostic view of how the two particles are entangled ("don't know how but it does" attitude)?

Note: A single photon will not (on its own) produce an electron-positron pair, and vice versa. 2 in and 2 out conserve.

There are many different views ("interpretations") of entanglement, as no one knows the physical mechanism by which components of an entangled system are connected. Agnostic probably being most common interpretation. :smile:
 
DrChinese said:
Note: A single photon will not (on its own) produce an electron-positron pair, and vice versa. 2 in and 2 out conserve.
I assume you are talking about nucleus. Am I right?

There are many different views ("interpretations") of entanglement, as no one knows the physical mechanism by which components of an entangled system are connected. Agnostic probably being most common interpretation. :smile:
Thank you, DrChinese. I got it.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 46 ·
2
Replies
46
Views
5K
  • · Replies 6 ·
Replies
6
Views
943
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K