Establish that ## a\equiv b\pmod {p} ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary

Homework Help Overview

The discussion revolves around establishing the equivalence \( a \equiv b \pmod{p} \) given that \( a^p \equiv b^p \pmod{p} \), where \( a \) and \( b \) are integers not divisible by the prime \( p \). The context involves modular arithmetic and properties derived from Fermat's theorem.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants explore the necessity of the condition \( p \nmid a \) and \( p \nmid b \) in the proof. There is a discussion about whether this condition is essential for the argument being made.

Discussion Status

The conversation is ongoing, with participants questioning the relevance of certain assumptions and exploring the implications of the factorization of \( a^p - b^p \). Some guidance has been offered regarding the properties of integers in an integral domain.

Contextual Notes

There is a recognition that the proof may not require the conditions \( p \nmid a \) and \( p \nmid b \), leading to a reconsideration of the assumptions involved in the argument.

Math100
Messages
823
Reaction score
234
Homework Statement
Assuming that ## a ## and ## b ## are integers not divisible by the prime ## p ##, establish the following:
If ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
Relevant Equations
None.
Proof:

Suppose ## a^{p}\equiv b^{p}\pmod {p} ##, where ## a ## and ## b ## are integers not divisible by the prime ## p ##.
Then ## p\nmid a ## and ## p\nmid b ##.
Applying the Fermat's theorem produces:
## a^{p}\equiv a\pmod {p}, b^{p}\equiv b\pmod {p} ##.
Thus ## a^{p}\equiv a\equiv b^{p}\equiv b\pmod {p} ##.
Therefore, if ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Assuming that ## a ## and ## b ## are integers not divisible by the prime ## p ##, establish the following:
If ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
Relevant Equations:: None.

Proof:

Suppose ## a^{p}\equiv b^{p}\pmod {p} ##, where ## a ## and ## b ## are integers not divisible by the prime ## p ##.
Then ## p\nmid a ## and ## p\nmid b ##.
Applying the Fermat's theorem produces:
## a^{p}\equiv a\pmod {p}, b^{p}\equiv b\pmod {p} ##.
Thus ## a^{p}\equiv a\equiv b^{p}\equiv b\pmod {p} ##.
Therefore, if ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
Right, but what do you need ## p\nmid a ## and ## p\nmid b ## for?

If ##p\,|\,a^p\equiv b^p## then ##p\,|\,a ## and ##p\,|\,b## so ##a\equiv b\equiv 0\pmod{p}.##
 
fresh_42 said:
Right, but what do you need ## p\nmid a ## and ## p\nmid b ## for?

If ##p\,|\,a^p\equiv b^p## then ##p\,|\,a ## and ##p\,|\,b## so ##a\equiv b\equiv 0\pmod{p}.##
I just realized that I don't need them for anything.
 
fresh_42 said:
Right, but what do you need ## p\nmid a ## and ## p\nmid b ## for?

If ##p\,|\,a^p\equiv b^p## then ##p\,|\,a ## and ##p\,|\,b## so ##a\equiv b\equiv 0\pmod{p}.##
So should I include/add the line of ## p\,|\,a^p\equiv b^p##?
 
I think you can argue that $$(a-b)$$ is always a factor of $$a^p-b^p$$and use that Integers are an integral domain.
 
WWGD said:
I think you can argue that $$(a-b)$$ is always a factor of $$a^p-b^p$$and use that Integers are an integral domain.
Not if ##a\equiv b\pmod{p}.## Then you cannot divide.
 
Math100 said:
I just realized that I don't need them for anything.

fresh_42 said:
Not if ##a\equiv b\pmod{p}.## Then you cannot divide.
I don't mean dividing. I mean, in an Integral domain, as in our case, if a.b=0, then either a=0 or b=0 ( mod p).
 
Sorry @fresh_42 I have always believed that 0 is a factor of 0.

I have never seen someone say ##x^2-1## factors into ##(x-1)(x+1)##, except when ##x=\pm 1##
 
Office_Shredder said:
Sorry @fresh_42 I have always believed that 0 is a factor of 0.

I have never seen someone say ##x^2-1## factors into ##(x-1)(x+1)##, except when ##x=\pm 1##
Yes, I thought he meant ##\dfrac{a^p-b^p}{a-b}=a^{p-1}+\ldots \pmod{p}##
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K