Establish that ## a\equiv b\pmod {p} ##

  • Thread starter Thread starter Math100
  • Start date Start date
AI Thread Summary
The discussion centers on proving that if \( a^p \equiv b^p \pmod{p} \) for integers \( a \) and \( b \) not divisible by a prime \( p \), then \( a \equiv b \pmod{p} \). The proof utilizes Fermat's theorem, showing that \( a^p \equiv a \pmod{p} \) and \( b^p \equiv b \pmod{p} \). Participants question the necessity of the condition \( p \nmid a \) and \( p \nmid b \), concluding it is not essential for the proof. The conversation also touches on the implications of factors in an integral domain and the nature of divisibility in modular arithmetic. Ultimately, the proof is affirmed as valid under the given conditions.
Math100
Messages
813
Reaction score
229
Homework Statement
Assuming that ## a ## and ## b ## are integers not divisible by the prime ## p ##, establish the following:
If ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
Relevant Equations
None.
Proof:

Suppose ## a^{p}\equiv b^{p}\pmod {p} ##, where ## a ## and ## b ## are integers not divisible by the prime ## p ##.
Then ## p\nmid a ## and ## p\nmid b ##.
Applying the Fermat's theorem produces:
## a^{p}\equiv a\pmod {p}, b^{p}\equiv b\pmod {p} ##.
Thus ## a^{p}\equiv a\equiv b^{p}\equiv b\pmod {p} ##.
Therefore, if ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Assuming that ## a ## and ## b ## are integers not divisible by the prime ## p ##, establish the following:
If ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
Relevant Equations:: None.

Proof:

Suppose ## a^{p}\equiv b^{p}\pmod {p} ##, where ## a ## and ## b ## are integers not divisible by the prime ## p ##.
Then ## p\nmid a ## and ## p\nmid b ##.
Applying the Fermat's theorem produces:
## a^{p}\equiv a\pmod {p}, b^{p}\equiv b\pmod {p} ##.
Thus ## a^{p}\equiv a\equiv b^{p}\equiv b\pmod {p} ##.
Therefore, if ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
Right, but what do you need ## p\nmid a ## and ## p\nmid b ## for?

If ##p\,|\,a^p\equiv b^p## then ##p\,|\,a ## and ##p\,|\,b## so ##a\equiv b\equiv 0\pmod{p}.##
 
fresh_42 said:
Right, but what do you need ## p\nmid a ## and ## p\nmid b ## for?

If ##p\,|\,a^p\equiv b^p## then ##p\,|\,a ## and ##p\,|\,b## so ##a\equiv b\equiv 0\pmod{p}.##
I just realized that I don't need them for anything.
 
fresh_42 said:
Right, but what do you need ## p\nmid a ## and ## p\nmid b ## for?

If ##p\,|\,a^p\equiv b^p## then ##p\,|\,a ## and ##p\,|\,b## so ##a\equiv b\equiv 0\pmod{p}.##
So should I include/add the line of ## p\,|\,a^p\equiv b^p##?
 
I think you can argue that $$(a-b)$$ is always a factor of $$a^p-b^p$$and use that Integers are an integral domain.
 
WWGD said:
I think you can argue that $$(a-b)$$ is always a factor of $$a^p-b^p$$and use that Integers are an integral domain.
Not if ##a\equiv b\pmod{p}.## Then you cannot divide.
 
Math100 said:
I just realized that I don't need them for anything.

fresh_42 said:
Not if ##a\equiv b\pmod{p}.## Then you cannot divide.
I don't mean dividing. I mean, in an Integral domain, as in our case, if a.b=0, then either a=0 or b=0 ( mod p).
 
Sorry @fresh_42 I have always believed that 0 is a factor of 0.

I have never seen someone say ##x^2-1## factors into ##(x-1)(x+1)##, except when ##x=\pm 1##
 
Office_Shredder said:
Sorry @fresh_42 I have always believed that 0 is a factor of 0.

I have never seen someone say ##x^2-1## factors into ##(x-1)(x+1)##, except when ##x=\pm 1##
Yes, I thought he meant ##\dfrac{a^p-b^p}{a-b}=a^{p-1}+\ldots \pmod{p}##
 
Back
Top