Establish that ## a\equiv b\pmod {p} ##

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The discussion establishes that if \( a^{p} \equiv b^{p} \pmod{p} \) for integers \( a \) and \( b \) not divisible by the prime \( p \), then it follows that \( a \equiv b \pmod{p} \). This conclusion is derived using Fermat's Little Theorem, which states that \( a^{p} \equiv a \pmod{p} \) and \( b^{p} \equiv b \pmod{p} \). The necessity of ensuring \( p \nmid a \) and \( p \nmid b \) is clarified, emphasizing that if \( p \) divides \( a^{p} \equiv b^{p} \), then both \( a \) and \( b \) must be congruent to zero modulo \( p \).

PREREQUISITES
  • Understanding of Fermat's Little Theorem
  • Knowledge of modular arithmetic
  • Familiarity with integral domains
  • Basic algebraic manipulation of congruences
NEXT STEPS
  • Study Fermat's Little Theorem in depth
  • Explore properties of integral domains in algebra
  • Learn about polynomial factorization in modular arithmetic
  • Investigate applications of modular arithmetic in number theory
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in the properties of modular arithmetic and prime numbers.

Math100
Messages
817
Reaction score
230
Homework Statement
Assuming that ## a ## and ## b ## are integers not divisible by the prime ## p ##, establish the following:
If ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
Relevant Equations
None.
Proof:

Suppose ## a^{p}\equiv b^{p}\pmod {p} ##, where ## a ## and ## b ## are integers not divisible by the prime ## p ##.
Then ## p\nmid a ## and ## p\nmid b ##.
Applying the Fermat's theorem produces:
## a^{p}\equiv a\pmod {p}, b^{p}\equiv b\pmod {p} ##.
Thus ## a^{p}\equiv a\equiv b^{p}\equiv b\pmod {p} ##.
Therefore, if ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Assuming that ## a ## and ## b ## are integers not divisible by the prime ## p ##, establish the following:
If ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
Relevant Equations:: None.

Proof:

Suppose ## a^{p}\equiv b^{p}\pmod {p} ##, where ## a ## and ## b ## are integers not divisible by the prime ## p ##.
Then ## p\nmid a ## and ## p\nmid b ##.
Applying the Fermat's theorem produces:
## a^{p}\equiv a\pmod {p}, b^{p}\equiv b\pmod {p} ##.
Thus ## a^{p}\equiv a\equiv b^{p}\equiv b\pmod {p} ##.
Therefore, if ## a^{p}\equiv b^{p}\pmod {p} ##, then ## a\equiv b\pmod {p} ##.
Right, but what do you need ## p\nmid a ## and ## p\nmid b ## for?

If ##p\,|\,a^p\equiv b^p## then ##p\,|\,a ## and ##p\,|\,b## so ##a\equiv b\equiv 0\pmod{p}.##
 
fresh_42 said:
Right, but what do you need ## p\nmid a ## and ## p\nmid b ## for?

If ##p\,|\,a^p\equiv b^p## then ##p\,|\,a ## and ##p\,|\,b## so ##a\equiv b\equiv 0\pmod{p}.##
I just realized that I don't need them for anything.
 
fresh_42 said:
Right, but what do you need ## p\nmid a ## and ## p\nmid b ## for?

If ##p\,|\,a^p\equiv b^p## then ##p\,|\,a ## and ##p\,|\,b## so ##a\equiv b\equiv 0\pmod{p}.##
So should I include/add the line of ## p\,|\,a^p\equiv b^p##?
 
I think you can argue that $$(a-b)$$ is always a factor of $$a^p-b^p$$and use that Integers are an integral domain.
 
WWGD said:
I think you can argue that $$(a-b)$$ is always a factor of $$a^p-b^p$$and use that Integers are an integral domain.
Not if ##a\equiv b\pmod{p}.## Then you cannot divide.
 
Math100 said:
I just realized that I don't need them for anything.

fresh_42 said:
Not if ##a\equiv b\pmod{p}.## Then you cannot divide.
I don't mean dividing. I mean, in an Integral domain, as in our case, if a.b=0, then either a=0 or b=0 ( mod p).
 
Sorry @fresh_42 I have always believed that 0 is a factor of 0.

I have never seen someone say ##x^2-1## factors into ##(x-1)(x+1)##, except when ##x=\pm 1##
 
Office_Shredder said:
Sorry @fresh_42 I have always believed that 0 is a factor of 0.

I have never seen someone say ##x^2-1## factors into ##(x-1)(x+1)##, except when ##x=\pm 1##
Yes, I thought he meant ##\dfrac{a^p-b^p}{a-b}=a^{p-1}+\ldots \pmod{p}##
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K