I Exact dynamics of spin in varying magnetic field

KDPhysics
Messages
73
Reaction score
24
TL;DR Summary
Can one use the Schrodinger picture propagator for a sudden, constant perturbation?
Consider an uncharged particle with spin one-half moving with speed ##v## in a region with magnetic field ##\textbf{B}=B\textbf{e}_z##. In a certain length ##L## of the particle's path, there is an additional, weak magnetic field ##\textbf{B}_\perp=B_\perp \textbf{e}_x##. Assuming the electron has magnetic moment ##\mu## then
$$
H(t) = H_0 + V(t)
$$
where ##H_0=-\mu B \sigma_z## and
$$
V(t)=\begin{cases}
-\mu B_\perp \sigma_x, \ \text{ for } 0<t<l/v\\
0, \ \text { otherwise}
\end{cases}
$$
Assuming the particle starts out in the ##|+\rangle## state (spin-up along the ##z##-axis) then I found using perturbation theory that the probability that the spin flips to ##|-\rangle## after time ##t>L/v## is
$$
P(t>L/v) = \bigg[\frac{B_\perp}{B}\sin\bigg(\frac{\mu B L}{\hbar v}\bigg)\bigg]^2
$$
I am wondering how I could derive the result without assuming that ##B_\perp\ll B##?

My first instinct was to use the propagator to evolve the state from ##t=0## to ##t=L/v##:
\begin{align}
&e^{-iH(t)t/\hbar} = e^{i\mu\textbf{B}\cdot \boldsymbol{\sigma}t/\hbar} = \cos \bigg(\frac{\mu B't}{\hbar}\bigg)\mathbb{1}+i\sin \bigg(\frac{\mu B't}{\hbar}\bigg)\frac{B\sigma_z+B_\perp \sigma_z}{B'}\\
\implies & |+(t)\rangle = \cos \bigg(\frac{\mu B't}{\hbar}\bigg)|+\rangle+i\sin \bigg(\frac{\mu B't}{\hbar}\bigg)\frac{B|+\rangle+B_\perp |-\rangle}{B'}\\
\implies & |\langle-|+(t)\rangle|^2 = \bigg[\frac{B_\perp}{B'}\sin \bigg(\frac{\mu B't}{\hbar}\bigg)\bigg]^2
\end{align}
where ##B'=\sqrt{B^2+B_\perp^2}##. Taking the ##B_\perp/B<<1## limit (perturbative limit) then I recover
$$
P(t>L/v) = \bigg[\frac{B_\perp}{B}\sin\bigg(\frac{\mu B L}{\hbar v}\bigg)\bigg]^2
$$
as desired.

However, I'm not entirely sure if my approach of using the Schrödinger picture propagator ##U(t)=e^{-iHt/\hbar}## is correct. Indeed since ##H(t<0)## does not commute with ##H(t>0)##, there is no guarantee that the ##|+\rangle## state at time ##t=0^-## will not immediately jump and transition to some other state at ##t=0^+##, implying that assuming the state will be ##|+\rangle## at ##t=0^+## could be wrong. Why did my argument still yield the correct result?
 
Physics news on Phys.org
It seems like I overlooked the simple fact that the state cannot change during a sudden, ##\textit{finite}## perturbation, so I was right in assuming that the spin would be ##|+\rangle## at ##t=0^+##.

To understand why the system's state must be continuous over the sudden perturbation in the Hamiltonian, we can write
\begin{cases}
i\hbar \frac{d}{dt}|\psi(t)\rangle = H_0 |\psi(t)\rangle, \ &t<0\\
i\hbar \frac{d}{dt}|\psi(t)\rangle = (H_0+V) |\psi(t)\rangle, \ &t>0
\end{cases}
Integrating from ##0^-=-\tau## to ##0^+=\tau## where ##\tau \rightarrow 0## then
$$
i\hbar(|\psi(\tau)\rangle-|\psi(-\tau)\rangle) = \int_{-\tau}^0 H_0 |\psi(t)\rangle \ dt + \int_0^\tau (H_0+V)|\psi(t)\rangle \ dt
$$
Since ##|\psi(t)\rangle## has to be continuous over ##(-\tau,0)## and ##(0,\tau)##, we can apply the Mean Value Theorem, which states that there must be some ##\tau_-\in(-\tau,0)## and some ##\tau_+\in(0,\tau)## such that
$$
\int_{-\tau}^0 H_0 |\psi(t)\rangle \ dt + \int_0^\tau (H_0+V)|\psi(t)\rangle \ dt = \tau (H_0|\psi(\tau_-)\rangle + (H_0+V)|\psi(\tau_+)\rangle)
$$
Taking the limit as ##\tau \rightarrow 0## we find that
$$
\lim_{\tau \rightarrow 0} (|\psi(\tau)\rangle-|\psi(-\tau)\rangle) = \frac{i}{\hbar}\lim_{\tau \rightarrow 0}\tau[H_0|\psi(\tau_-)\rangle + (H_0+V)|\psi(\tau_+)\rangle] = 0
$$
implying that ##|\psi(0^+)\rangle = |\psi(0^-)\rangle## (assuming ##V_0## is finite).
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...

Similar threads

Replies
1
Views
562
Replies
4
Views
2K
Replies
12
Views
2K
Replies
0
Views
1K
Replies
4
Views
1K
Replies
1
Views
473
Replies
19
Views
4K
Back
Top