Exploring "The Mathematical Theory of Black Holes" by S. Chandrasekhar

kparchevsky
Messages
4
Reaction score
0
In page 67 of book "The mathematical theory of black holes" by S. Chandrasekhar in chapter 2 "Space-Time of sufficient generality" there is a theorem that metric of a 2-dimensional space
$$ds^2 = g_{11} (dx^1)^2 + 2g_{12} dx^1 dx^2 + g_{22} (dx^2)^2$$
can be brought to a diagonal form.

I would do this in the following way: introduce new contravariant coordinates ##x'## (how ##x## depend on ##x'##) ##x^1 = p(x'^1, x'^2), x^2= q(x'^1, x'^2)##, differentiate them, plug ##dx^1## and ##dx^2## into the metric above, and equate factor at ##dx'^1 dx'^2## to zero.

That is not how it is done in the book. First they introduce new contravariant coordinates ##x'## such that the inverse functions are defined (how ##x'## depend on ##x##) Eq.(6)
$$x'^1=\phi(x^1,x^2),\qquad x'^2=\psi(x^1,x^2)$$
then they try to reduce to the diagonal form the contravariant form of the metric (##g^{\mu\nu}## with up indexes, ##dx_\mu## with low indexes) Eq.(7),
$$ds^2=g^{11}(dx_1)^2+2g^{12}dx_1dx_2+g^{22}(dx_2)^2$$
though coordinate transformations are defined for contravariant coordinates (up indexes).

I cannot follow the logic of the derivation.

Could you help me to understand how it is derived in the book?

Thank you.

[Mentor Note -- New user has been PM'd about posting math using LaTeX and has been pointed to the "LaTeX Guide" link, especially for threads with the "A" prefix]
 
Last edited:
Physics news on Phys.org
kparchevsky said:
[...] they introduce new contravariant coordinates ##x'## such that the inverse functions are defined (how ##x'## depend on ##x##) Eq.(6)$$x'^1=\phi(x^1,x^2),\qquad x'^2=\psi(x^1,x^2)$$ then they try to reduce to the diagonal form the contravariant form of the metric (##g^{\mu\nu}## with up indexes, ##dx_\mu## with low indexes) Eq.(7),

kparchevsky said:
$$ ds^2=g^{11}(dx_1)^2+2g^{12}dx_1dx_2+g^{22}(dx_2)^2$$ though coordinate transformations are defined for contravariant coordinates (up indexes). I cannot follow the logic of the derivation.
You didn't say at which equation in the book you get stuck. Do you understand eqs (8) and (9)? They're basically just specific cases of the general transformation formula$$g'^{\mu\nu} ~=~ \frac{\partial x'^\mu}{\partial x^\alpha} \; \frac{\partial x'^\nu}{\partial x^\beta} \; g^{\alpha\beta} ~,$$ although Chandrasekhar uses a notation convention of putting primes on the indices rather than the main symbol as I've done above.
 
  • Like
Likes kparchevsky, topsquark, vanhees71 and 1 other person
strangerep said:
You didn't say at which equation in the book you get stuck. Do you understand eqs (8) and (9)? They're basically just specific cases of the general transformation formula$$g'^{\mu\nu} ~=~ \frac{\partial x'^\mu}{\partial x^\alpha} \; \frac{\partial x'^\nu}{\partial x^\beta} \; g^{\alpha\beta} ~,$$ although Chandrasekhar uses a notation convention of putting primes on the indices rather than the main symbol as I've done above.
Thank you. Trying to prove Eq.(8) I took differential from both sides of Eq.(6), solved it for ##dx^i##, converted it to ##dx_i##, plugged into Eq.(7) and zeroed term at ##dx'^i dx'^j##, but I just had to use the definition of a tensor! The rest of derivation in the book is clear.
 
Can't you just see this by counting? In 2 dimensions the metric has 1/2×2×3=3 independent components. With 2 general coordinate transformations (gct's) you have enough freedom to put one component to zero. Explicitly you can write down the transformed compononent for g_12, put it to zero, and see what constraints you get for the gct. This partially gauge fixes the gct's.

I don't get why you use "covariant coordinates" in the first place. For a similar calculation, see any book on string theory how to gauge fix the worldsheet metric and why this implicates that string theory is a CFT.
 
haushofer said:
Can't you just see this by counting? In 2 dimensions the metric has 1/2×2×3=3 independent components. With 2 general coordinate transformations (gct's) you have enough freedom to put one component to zero. Explicitly you can write down the transformed compononent for g_12, put it to zero, and see what constraints you get for the gct. This partially gauge fixes the gct's.

I don't get why you use "covariant coordinates" in the first place. For a similar calculation, see any book on string theory how to gauge fix the worldsheet metric and why this implicates that string theory is a CFT.
>I don't get why you use "covariant coordinates" in the first place
The goal was to prove the specific formula in the specific book, and this formula was written in covariant coordinates.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top