Exploring "The Mathematical Theory of Black Holes" by S. Chandrasekhar

kparchevsky
Messages
4
Reaction score
0
In page 67 of book "The mathematical theory of black holes" by S. Chandrasekhar in chapter 2 "Space-Time of sufficient generality" there is a theorem that metric of a 2-dimensional space
$$ds^2 = g_{11} (dx^1)^2 + 2g_{12} dx^1 dx^2 + g_{22} (dx^2)^2$$
can be brought to a diagonal form.

I would do this in the following way: introduce new contravariant coordinates ##x'## (how ##x## depend on ##x'##) ##x^1 = p(x'^1, x'^2), x^2= q(x'^1, x'^2)##, differentiate them, plug ##dx^1## and ##dx^2## into the metric above, and equate factor at ##dx'^1 dx'^2## to zero.

That is not how it is done in the book. First they introduce new contravariant coordinates ##x'## such that the inverse functions are defined (how ##x'## depend on ##x##) Eq.(6)
$$x'^1=\phi(x^1,x^2),\qquad x'^2=\psi(x^1,x^2)$$
then they try to reduce to the diagonal form the contravariant form of the metric (##g^{\mu\nu}## with up indexes, ##dx_\mu## with low indexes) Eq.(7),
$$ds^2=g^{11}(dx_1)^2+2g^{12}dx_1dx_2+g^{22}(dx_2)^2$$
though coordinate transformations are defined for contravariant coordinates (up indexes).

I cannot follow the logic of the derivation.

Could you help me to understand how it is derived in the book?

Thank you.

[Mentor Note -- New user has been PM'd about posting math using LaTeX and has been pointed to the "LaTeX Guide" link, especially for threads with the "A" prefix]
 
Last edited:
Physics news on Phys.org
kparchevsky said:
[...] they introduce new contravariant coordinates ##x'## such that the inverse functions are defined (how ##x'## depend on ##x##) Eq.(6)$$x'^1=\phi(x^1,x^2),\qquad x'^2=\psi(x^1,x^2)$$ then they try to reduce to the diagonal form the contravariant form of the metric (##g^{\mu\nu}## with up indexes, ##dx_\mu## with low indexes) Eq.(7),

kparchevsky said:
$$ ds^2=g^{11}(dx_1)^2+2g^{12}dx_1dx_2+g^{22}(dx_2)^2$$ though coordinate transformations are defined for contravariant coordinates (up indexes). I cannot follow the logic of the derivation.
You didn't say at which equation in the book you get stuck. Do you understand eqs (8) and (9)? They're basically just specific cases of the general transformation formula$$g'^{\mu\nu} ~=~ \frac{\partial x'^\mu}{\partial x^\alpha} \; \frac{\partial x'^\nu}{\partial x^\beta} \; g^{\alpha\beta} ~,$$ although Chandrasekhar uses a notation convention of putting primes on the indices rather than the main symbol as I've done above.
 
  • Like
Likes kparchevsky, topsquark, vanhees71 and 1 other person
strangerep said:
You didn't say at which equation in the book you get stuck. Do you understand eqs (8) and (9)? They're basically just specific cases of the general transformation formula$$g'^{\mu\nu} ~=~ \frac{\partial x'^\mu}{\partial x^\alpha} \; \frac{\partial x'^\nu}{\partial x^\beta} \; g^{\alpha\beta} ~,$$ although Chandrasekhar uses a notation convention of putting primes on the indices rather than the main symbol as I've done above.
Thank you. Trying to prove Eq.(8) I took differential from both sides of Eq.(6), solved it for ##dx^i##, converted it to ##dx_i##, plugged into Eq.(7) and zeroed term at ##dx'^i dx'^j##, but I just had to use the definition of a tensor! The rest of derivation in the book is clear.
 
Can't you just see this by counting? In 2 dimensions the metric has 1/2×2×3=3 independent components. With 2 general coordinate transformations (gct's) you have enough freedom to put one component to zero. Explicitly you can write down the transformed compononent for g_12, put it to zero, and see what constraints you get for the gct. This partially gauge fixes the gct's.

I don't get why you use "covariant coordinates" in the first place. For a similar calculation, see any book on string theory how to gauge fix the worldsheet metric and why this implicates that string theory is a CFT.
 
haushofer said:
Can't you just see this by counting? In 2 dimensions the metric has 1/2×2×3=3 independent components. With 2 general coordinate transformations (gct's) you have enough freedom to put one component to zero. Explicitly you can write down the transformed compononent for g_12, put it to zero, and see what constraints you get for the gct. This partially gauge fixes the gct's.

I don't get why you use "covariant coordinates" in the first place. For a similar calculation, see any book on string theory how to gauge fix the worldsheet metric and why this implicates that string theory is a CFT.
>I don't get why you use "covariant coordinates" in the first place
The goal was to prove the specific formula in the specific book, and this formula was written in covariant coordinates.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top