MHB Find a countable set that is also open

  • Thread starter Thread starter seacoast123
  • Start date Start date
  • Tags Tags
    Set
Click For Summary
No countable subset of the real line can be open. The argument begins by assuming a countable open set C exists in the real numbers and selecting any point x from C. For x, there exists a delta such that the interval (x - delta, x + delta) is entirely contained within C. However, this interval is uncountable, leading to the conclusion that C cannot be countable. Thus, a countable open set in the real line cannot exist.
seacoast123
Messages
1
Reaction score
0
Find a countable set that is also open or prove that one cannot exist
 
Physics news on Phys.org
seacoast123 said:
Find a countable set that is also open or prove that one cannot exist
No countable subset of the real line is open. To prove it, assume $C$ is a countable open subset of $\mathbb R$ and $x$ be any point in $C$.

Then there exists $\delta>0$ such that $(x-\delta,x+\delta)\subseteq C$.

But $(x-\delta,x+\delta)$ is uncountable (why?).

Hence $C$ cannot be countable.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K