WMDhamnekar
MHB
- 376
- 28
Let X and Y be two independent \mathcal{N}(0,1) random variables and
Z=1+X+XY^2
W=1+X
I want to find Cov(Z,W).
Solution:-
Cov(Z,W)=Cov(1+X+XY^2,1+X)
Cov(Z,W)=Cov(X+XY^2,X)
Cov(Z,W)=Cov(X,X)+Cov(XY^2,X)
Cov(Z,W)=Var(X)+E(X^2Y^2)-E(XY^2)E(X)
Cov(Z,W)=1+E(X^2)E(Y^2)-E(X)^2E(Y^2)
Cov(Z,W)=1+1-0=2
Now E(X)=0, So E(X)^2E(Y^2)=0, But i don't follow how E(X^2)E(Y^2)=1? Would any member explain that? My another question is what is Var(X^2)?
Z=1+X+XY^2
W=1+X
I want to find Cov(Z,W).
Solution:-
Cov(Z,W)=Cov(1+X+XY^2,1+X)
Cov(Z,W)=Cov(X+XY^2,X)
Cov(Z,W)=Cov(X,X)+Cov(XY^2,X)
Cov(Z,W)=Var(X)+E(X^2Y^2)-E(XY^2)E(X)
Cov(Z,W)=1+E(X^2)E(Y^2)-E(X)^2E(Y^2)
Cov(Z,W)=1+1-0=2
Now E(X)=0, So E(X)^2E(Y^2)=0, But i don't follow how E(X^2)E(Y^2)=1? Would any member explain that? My another question is what is Var(X^2)?
Last edited: