MHB Find the expectation and covariance of a stochastic process

Click For Summary
The discussion focuses on finding the expectation and covariance of the stochastic process defined as \( Z(t) = e^{W(t) - \frac{1}{2}t} \), where \( W(t) \) is a standard Wiener process. It is established that \( \mathbb{E}[Z(t)] = 1 \) by using the moment generating function of the normal distribution. The covariance function, denoted as \( \text{cov}(Z(t), Z(s)) \), is also discussed, emphasizing the relationship between the processes at different time points. A reference to a resource on Geometric Brownian Motion is provided to aid in understanding the properties of such stochastic processes. The thread concludes with a suggestion for further reading to clarify these concepts.
i_a_n
Messages
78
Reaction score
0
The problem is:Let $W(t)$, $t ≥ 0$, be a standard Wiener process. Define a new stochastic process $Z(t)$ as $Z(t)=e^{W(t)-(1/2)\cdot t}$, $t≥ 0$. Show that $\mathbb{E}[Z(t)] = 1$ and use this result to compute the covariance function of $Z(t)$. I wonder how to compute and start with the expectation cause it is not any case with a formula to use. Thanks in advance!
 
Physics news on Phys.org
From the definition of the Wiener process we have that $W(t) \sim N(0,t)$. Calculating the expected value gives
$$\mathbb{E}[Z(t)] = e^{\frac{-1}{2}t} \mathbb{E}[e^{W(t)}]$$
To complete the proof use the moment generating function of the normal distribution.

I guess with the covariance function you mean $\mbox{cov}(Z(t),Z(s))$ for $s,t \geq 0$?
 
ianchenmu said:
The problem is:Let $W(t)$, $t ≥ 0$, be a standard Wiener process. Define a new stochastic process $Z(t)$ as $Z(t)=e^{W(t)-(1/2)\cdot t}$, $t≥ 0$. Show that $\mathbb{E}[Z(t)] = 1$ and use this result to compute the covariance function of $Z(t)$. I wonder how to compute and start with the expectation cause it is not any case with a formula to use. Thanks in advance!

I suggest You reading this excellent written by Steven R. Dunbar ...

http://www.math.unl.edu/~sdunbar1/MathematicalFinance/Lessons/StochasticCalculus/GeometricBrownianMotion/geometricbrownian.pdf

... which describes the properties of the 'Geometric Brownian Motion'. This process is described by the formula ...

$\displaystyle Z(t) = Z_{0}\ e^{\mu\ t + \sigma\ W(t)}\ (1)$

... where W(t) is a standard Brownian Motion. The mean and the variance are...

$\displaystyle E \{ Z(t)\} = Z_{0}\ e^{(\mu + \frac{\sigma^{2}}{2})\ t}\ (2)$

$\displaystyle Var \{Z(t) \} = Z_{0}^{2}\ (e^{\sigma^{2}\ t} - 1)\ e^{(2\ \mu\ + \sigma^{2})\ t}\ (3)$

Kind regards

$\chi$ $\sigma$
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
949
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 2 ·
Replies
2
Views
432
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K