Find the smallest integer ## a>2 ## such that ## 2\mid a ##

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The smallest integer ## a > 2 ## that satisfies the conditions ## 2 \mid a ##, ## 3 \mid (a + 1) ##, ## 4 \mid (a + 2) ##, ## 5 \mid (a + 3) ##, and ## 6 \mid (a + 4) ## is ## 62 ##. This conclusion is derived from the modular arithmetic conditions, where the least common multiple of the divisors 2, 3, 4, 5, and 6 is 60, leading to the congruence ## a \equiv 2 \pmod{60} ##. The analysis confirms that the conditions for divisibility by 2 and 3 are redundant given the constraints imposed by 4, 5, and 6.

PREREQUISITES
  • Understanding of modular arithmetic
  • Knowledge of least common multiples (LCM)
  • Familiarity with divisibility rules
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study modular arithmetic applications in number theory
  • Learn about the properties of least common multiples and greatest common divisors
  • Explore advanced divisibility rules and their proofs
  • Investigate the Chinese Remainder Theorem for solving congruences
USEFUL FOR

Mathematicians, students studying number theory, educators teaching modular arithmetic, and anyone interested in solving integer divisibility problems.

Math100
Messages
817
Reaction score
230
Homework Statement
Find the smallest integer ## a>2 ## such that ## 2\mid a, 3\mid (a+1), 4\mid (a+2), 5\mid (a+3), 6\mid (a+4) ##.
Relevant Equations
None.
Let ## a>2 ## be the smallest integer.
Then
\begin{align*}
&2\mid a\implies a\equiv 0\pmod {2}\implies a\equiv 2\pmod {2}\\
&3\mid (a+1)\implies a+1\equiv 0\pmod {3}\implies a\equiv -1\pmod {3}\implies a\equiv 2\pmod {3}\\
&4\mid (a+2)\implies a+2\equiv 0\pmod {4}\implies a\equiv -2\pmod {4}\implies a\equiv 2\pmod {4}\\
&5\mid (a+3)\implies a+3\equiv 0\pmod {5}\implies a\equiv -3\pmod {5}\implies a\equiv 2\pmod {5}\\
&6\mid (a+4)\implies a+4\equiv 0\pmod {6}\implies a\equiv -4\pmod {6}\implies a\equiv 2\pmod {6}.\\
\end{align*}
Observe that ## lcm(2, 3, 4, 5, 6)=60 ##.
Thus ## a\equiv 2\pmod {60}\implies a=62 ##.
Therefore, the smallest integer ## a>2 ## such that ## 2\mid a, 3\mid (a+1), 4\mid (a+2), 5\mid (a+3), 6\mid (a+4) ## is ## 62 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Find the smallest integer ## a>2 ## such that ## 2\mid a, 3\mid (a+1), 4\mid (a+2), 5\mid (a+3), 6\mid (a+4) ##.
Relevant Equations:: None.

Let ## a>2 ## be the smallest integer.
Then
\begin{align*}
&2\mid a\implies a\equiv 0\pmod {2}\implies a\equiv 2\pmod {2}\\
&3\mid (a+1)\implies a+1\equiv 0\pmod {3}\implies a\equiv -1\pmod {3}\implies a\equiv 2\pmod {3}\\
&4\mid (a+2)\implies a+2\equiv 0\pmod {4}\implies a\equiv -2\pmod {4}\implies a\equiv 2\pmod {4}\\
&5\mid (a+3)\implies a+3\equiv 0\pmod {5}\implies a\equiv -3\pmod {5}\implies a\equiv 2\pmod {5}\\
&6\mid (a+4)\implies a+4\equiv 0\pmod {6}\implies a\equiv -4\pmod {6}\implies a\equiv 2\pmod {6}.\\
\end{align*}
Observe that ## lcm(2, 3, 4, 5, 6)=60 ##.
Thus ## a\equiv 2\pmod {60}\implies a=62 ##.
Therefore, the smallest integer ## a>2 ## such that ## 2\mid a, 3\mid (a+1), 4\mid (a+2), 5\mid (a+3), 6\mid (a+4) ## is ## 62 ##.
Nice. And correct.

You could drop the first condition ##a\equiv 0\pmod 2## since it follows automatically from ##4\,|\,(a+2).## Same for ##a\equiv 2\pmod 3.## We only need ##4,5,6.##

(##6\,|\,(a+4)\Longrightarrow 3\,|\,(a+3+1)\Longrightarrow 3\,|\,(a+1)##)
 
Last edited:
  • Like
Likes   Reactions: Math100
fresh_42 said:
You could drop the first condition ##a\equiv 0\pmod 2## since it follows automatically from ##4\,|\,(a+2).## Same for ##a\equiv 2\pmod 3.## We only need ##4,5,6.##

I'm sorry but what do you mean by it follows automatically from 4 | a=(a+2) for the first condition? Could you show how you derived that?
 
Nanitf said:
I'm sorry but what do you mean by it follows automatically from 4 | a=(a+2) for the first condition? Could you show how you derived that?
Assume ##a\not\equiv 0 \pmod{2}## then ##a=2k+1## for some ##k\in \mathbb{Z}## and ##a+2=2k+3## is odd, and thus cannot be divided by ##4.## Or positively:
\begin{align*}
4\,|\,(a+2) \Longrightarrow 2\,|\,(a+2) \Longrightarrow 2\,|\,a \Longrightarrow a\equiv 0\pmod{2}
\end{align*}
where the only interesting step is ##2\,|\,(a+2) \Rightarrow a+2=2\cdot b\Rightarrow a=2\cdot b-2=2\cdot(b-1) \Rightarrow 2\,|\,a.##
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K