Find the smallest integer ## a>2 ## such that ## 2\mid a ##

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
The smallest integer a greater than 2 that satisfies the conditions 2|a, 3|(a+1), 4|(a+2), 5|(a+3), and 6|(a+4) is determined to be 62. The reasoning involves modular arithmetic, showing that a must be congruent to 2 modulo 60, derived from the least common multiple of the divisors. Some participants noted that the conditions for divisibility by 2 and 3 could be inferred from the conditions for 4, 5, and 6, simplifying the problem. A detailed explanation clarified how the divisibility by 4 implies a is even.
Math100
Messages
817
Reaction score
229
Homework Statement
Find the smallest integer ## a>2 ## such that ## 2\mid a, 3\mid (a+1), 4\mid (a+2), 5\mid (a+3), 6\mid (a+4) ##.
Relevant Equations
None.
Let ## a>2 ## be the smallest integer.
Then
\begin{align*}
&2\mid a\implies a\equiv 0\pmod {2}\implies a\equiv 2\pmod {2}\\
&3\mid (a+1)\implies a+1\equiv 0\pmod {3}\implies a\equiv -1\pmod {3}\implies a\equiv 2\pmod {3}\\
&4\mid (a+2)\implies a+2\equiv 0\pmod {4}\implies a\equiv -2\pmod {4}\implies a\equiv 2\pmod {4}\\
&5\mid (a+3)\implies a+3\equiv 0\pmod {5}\implies a\equiv -3\pmod {5}\implies a\equiv 2\pmod {5}\\
&6\mid (a+4)\implies a+4\equiv 0\pmod {6}\implies a\equiv -4\pmod {6}\implies a\equiv 2\pmod {6}.\\
\end{align*}
Observe that ## lcm(2, 3, 4, 5, 6)=60 ##.
Thus ## a\equiv 2\pmod {60}\implies a=62 ##.
Therefore, the smallest integer ## a>2 ## such that ## 2\mid a, 3\mid (a+1), 4\mid (a+2), 5\mid (a+3), 6\mid (a+4) ## is ## 62 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Find the smallest integer ## a>2 ## such that ## 2\mid a, 3\mid (a+1), 4\mid (a+2), 5\mid (a+3), 6\mid (a+4) ##.
Relevant Equations:: None.

Let ## a>2 ## be the smallest integer.
Then
\begin{align*}
&2\mid a\implies a\equiv 0\pmod {2}\implies a\equiv 2\pmod {2}\\
&3\mid (a+1)\implies a+1\equiv 0\pmod {3}\implies a\equiv -1\pmod {3}\implies a\equiv 2\pmod {3}\\
&4\mid (a+2)\implies a+2\equiv 0\pmod {4}\implies a\equiv -2\pmod {4}\implies a\equiv 2\pmod {4}\\
&5\mid (a+3)\implies a+3\equiv 0\pmod {5}\implies a\equiv -3\pmod {5}\implies a\equiv 2\pmod {5}\\
&6\mid (a+4)\implies a+4\equiv 0\pmod {6}\implies a\equiv -4\pmod {6}\implies a\equiv 2\pmod {6}.\\
\end{align*}
Observe that ## lcm(2, 3, 4, 5, 6)=60 ##.
Thus ## a\equiv 2\pmod {60}\implies a=62 ##.
Therefore, the smallest integer ## a>2 ## such that ## 2\mid a, 3\mid (a+1), 4\mid (a+2), 5\mid (a+3), 6\mid (a+4) ## is ## 62 ##.
Nice. And correct.

You could drop the first condition ##a\equiv 0\pmod 2## since it follows automatically from ##4\,|\,(a+2).## Same for ##a\equiv 2\pmod 3.## We only need ##4,5,6.##

(##6\,|\,(a+4)\Longrightarrow 3\,|\,(a+3+1)\Longrightarrow 3\,|\,(a+1)##)
 
Last edited:
fresh_42 said:
You could drop the first condition ##a\equiv 0\pmod 2## since it follows automatically from ##4\,|\,(a+2).## Same for ##a\equiv 2\pmod 3.## We only need ##4,5,6.##

I'm sorry but what do you mean by it follows automatically from 4 | a=(a+2) for the first condition? Could you show how you derived that?
 
Nanitf said:
I'm sorry but what do you mean by it follows automatically from 4 | a=(a+2) for the first condition? Could you show how you derived that?
Assume ##a\not\equiv 0 \pmod{2}## then ##a=2k+1## for some ##k\in \mathbb{Z}## and ##a+2=2k+3## is odd, and thus cannot be divided by ##4.## Or positively:
\begin{align*}
4\,|\,(a+2) \Longrightarrow 2\,|\,(a+2) \Longrightarrow 2\,|\,a \Longrightarrow a\equiv 0\pmod{2}
\end{align*}
where the only interesting step is ##2\,|\,(a+2) \Rightarrow a+2=2\cdot b\Rightarrow a=2\cdot b-2=2\cdot(b-1) \Rightarrow 2\,|\,a.##
 
The working out suggests first equating ## \sqrt{i} = x + iy ## and suggests that squaring and equating real and imaginary parts of both sides results in ## \sqrt{i} = \pm (1+i)/ \sqrt{2} ## Squaring both sides results in: $$ i = (x + iy)^2 $$ $$ i = x^2 + 2ixy -y^2 $$ equating real parts gives $$ x^2 - y^2 = 0 $$ $$ (x+y)(x-y) = 0 $$ $$ x = \pm y $$ equating imaginary parts gives: $$ i = 2ixy $$ $$ 2xy = 1 $$ I'm not really sure how to proceed from here.

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K