Find the solutions of ## 7x+3y\equiv 6\pmod {11} ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on solving the system of congruences: 7x + 3y ≡ 6 (mod 11) and 4x + 2y ≡ 9 (mod 11). The unique solution is determined through the application of the greatest common divisor (gcd) and manipulation of the equations, leading to x ≡ 9 (mod 11) and y ≡ 3 (mod 11). The process involves linear combinations of the equations and modular arithmetic techniques to isolate variables.

PREREQUISITES
  • Understanding of modular arithmetic
  • Familiarity with solving linear equations
  • Knowledge of the greatest common divisor (gcd)
  • Ability to manipulate congruences
NEXT STEPS
  • Study the Chinese Remainder Theorem for solving systems of congruences
  • Learn about modular inverses and their applications in solving equations
  • Explore advanced techniques in number theory, such as Diophantine equations
  • Investigate the properties of linear congruences and their solutions
USEFUL FOR

Mathematicians, students studying number theory, and anyone interested in solving systems of linear congruences.

Math100
Messages
817
Reaction score
230
Homework Statement
Find the solutions of the following system of congruences:
## 7x+3y\equiv 6\pmod {11} ##
## 4x+2y\equiv 9\pmod {11} ##.
Relevant Equations
None.
Consider the following system of congruences:
## 7x+3y\equiv 6\pmod {11} ##
## 4x+2y\equiv 9\pmod {11} ##.
Then ## gcd(7\cdot 2-3\cdot 4, 11)=gcd(2, 11)=1 ##.
This means that ## \exists ## a unique solution.
Observe that
\begin{align*}
&2(7x+3y)-3(4x+2y)\equiv [2(6)-3(9)]\pmod {11}\\
&\implies 2x\equiv -15\pmod {11}\\
&\implies 2x\equiv 7\pmod {11}\\
&\implies 12x\equiv 42\pmod {11}\\
&\implies x\equiv 9\pmod {11}.\\
\end{align*}
Thus
\begin{align*}
&4(7x+3y)-7(4x+2y)]\equiv [4(6)-7(9)]\pmod {11}\implies -2y\equiv -39\pmod {11}\\
&\implies 2y\equiv 39\pmod {11}\implies 12y\equiv 234\pmod {11}\\
&\implies y\equiv 3\pmod {11}.\\
\end{align*}
Therefore, the solutions are ## x\equiv 9\pmod {11} ## and ## y\equiv 3\pmod {11} ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Find the solutions of the following system of congruences:
## 7x+3y\equiv 6\pmod {11} ##
## 4x+2y\equiv 9\pmod {11} ##.
Relevant Equations:: None.

Consider the following system of congruences:
## 7x+3y\equiv 6\pmod {11} ##
## 4x+2y\equiv 9\pmod {11} ##.
Then ## gcd(7\cdot 2-3\cdot 4, 11)=gcd(2, 11)=1 ##.
This means that ## \exists ## a unique solution.
Observe that
\begin{align*}
&2(7x+3y)-3(4x+2y)\equiv [2(6)-3(9)]\pmod {11}\\
&\implies 2x\equiv -15\pmod {11}\\
&\implies 2x\equiv 7\pmod {11}\\
&\implies 12x\equiv 42\pmod {11}\\
&\implies x\equiv 9\pmod {11}.\\
\end{align*}
Thus
\begin{align*}
&4(7x+3y)-7(4x+2y)]\equiv [4(6)-7(9)]\pmod {11}\implies -2y\equiv -39\pmod {11}\\
&\implies 2y\equiv 39\pmod {11}\implies 12y\equiv 234\pmod {11}\\
&\implies y\equiv 3\pmod {11}.\\
\end{align*}
Therefore, the solutions are ## x\equiv 9\pmod {11} ## and ## y\equiv 3\pmod {11} ##.
Or you could observe that:
##\displaystyle 7x+3y+4x+2y\equiv 6+9 \pmod {11} ##

so that ##\displaystyle 11x+5y\equiv 15 \pmod {11} ##

which reduces to ##\displaystyle 0x+5y\equiv 4 \pmod {11} ## .

After a bit of work ##\displaystyle y\equiv 3 \pmod {11} ## .
 
Math100 said:
Homework Statement:: Find the solutions of the following system of congruences:
## 7x+3y\equiv 6\pmod {11} ##
## 4x+2y\equiv 9\pmod {11} ##.
Relevant Equations:: None.

Consider the following system of congruences:
## 7x+3y\equiv 6\pmod {11} ##
## 4x+2y\equiv 9\pmod {11} ##.
Then ## gcd(7\cdot 2-3\cdot 4, 11)=gcd(2, 11)=1 ##.
This means that ## \exists ## a unique solution.
Observe that
\begin{align*}
&2(7x+3y)-3(4x+2y)\equiv [2(6)-3(9)]\pmod {11}\\
&\implies 2x\equiv -15\pmod {11}\\
&\implies 2x\equiv 7\pmod {11}\\
&\implies 12x\equiv 42\pmod {11}\\
&\implies x\equiv 9\pmod {11}.\\
\end{align*}
Thus
\begin{align*}
&4(7x+3y)-7(4x+2y)]\equiv [4(6)-7(9)]\pmod {11}\implies -2y\equiv -39\pmod {11}\\
&\implies 2y\equiv 39\pmod {11}\implies 12y\equiv 234\pmod {11}\\
&\implies y\equiv 3\pmod {11}.\\
\end{align*}
Therefore, the solutions are ## x\equiv 9\pmod {11} ## and ## y\equiv 3\pmod {11} ##.
Correct.

I have observed that the coefficients of ##x## add up to ##11## so I simply added both equations and got ##5y\equiv 4\pmod{11}.## I got from ##5\cdot 9 \equiv 4\cdot 3\equiv 1\pmod{11}## the inverses ##5^{-1}\equiv 9\pmod{11}## and ##4^{-1}\equiv 3\pmod{11}.## Thus ##y\equiv 4\cdot 9\equiv 3\pmod{11} ## and ##x\equiv 4^{-1} (9-2y)\equiv 3\cdot (9-2\cdot 3)\equiv 9\pmod{11}.##
 
Last edited:
  • Like
Likes   Reactions: SammyS and Math100

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K