- #1
Math100
- 773
- 219
- Homework Statement
- Find the solutions of the following system of congruences:
## 7x+3y\equiv 6\pmod {11} ##
## 4x+2y\equiv 9\pmod {11} ##.
- Relevant Equations
- None.
Consider the following system of congruences:
## 7x+3y\equiv 6\pmod {11} ##
## 4x+2y\equiv 9\pmod {11} ##.
Then ## gcd(7\cdot 2-3\cdot 4, 11)=gcd(2, 11)=1 ##.
This means that ## \exists ## a unique solution.
Observe that
\begin{align*}
&2(7x+3y)-3(4x+2y)\equiv [2(6)-3(9)]\pmod {11}\\
&\implies 2x\equiv -15\pmod {11}\\
&\implies 2x\equiv 7\pmod {11}\\
&\implies 12x\equiv 42\pmod {11}\\
&\implies x\equiv 9\pmod {11}.\\
\end{align*}
Thus
\begin{align*}
&4(7x+3y)-7(4x+2y)]\equiv [4(6)-7(9)]\pmod {11}\implies -2y\equiv -39\pmod {11}\\
&\implies 2y\equiv 39\pmod {11}\implies 12y\equiv 234\pmod {11}\\
&\implies y\equiv 3\pmod {11}.\\
\end{align*}
Therefore, the solutions are ## x\equiv 9\pmod {11} ## and ## y\equiv 3\pmod {11} ##.
## 7x+3y\equiv 6\pmod {11} ##
## 4x+2y\equiv 9\pmod {11} ##.
Then ## gcd(7\cdot 2-3\cdot 4, 11)=gcd(2, 11)=1 ##.
This means that ## \exists ## a unique solution.
Observe that
\begin{align*}
&2(7x+3y)-3(4x+2y)\equiv [2(6)-3(9)]\pmod {11}\\
&\implies 2x\equiv -15\pmod {11}\\
&\implies 2x\equiv 7\pmod {11}\\
&\implies 12x\equiv 42\pmod {11}\\
&\implies x\equiv 9\pmod {11}.\\
\end{align*}
Thus
\begin{align*}
&4(7x+3y)-7(4x+2y)]\equiv [4(6)-7(9)]\pmod {11}\implies -2y\equiv -39\pmod {11}\\
&\implies 2y\equiv 39\pmod {11}\implies 12y\equiv 234\pmod {11}\\
&\implies y\equiv 3\pmod {11}.\\
\end{align*}
Therefore, the solutions are ## x\equiv 9\pmod {11} ## and ## y\equiv 3\pmod {11} ##.