Find the units digit of ## 3^{100} ## by the use of Fermat's theorem

Click For Summary
To find the units digit of 3^100, we consider it modulo 10, which factors into 5 and 2. By applying Fermat's theorem, we find that 3^4 is congruent to 1 modulo 5, leading to the conclusion that 3^100 is also congruent to 1 modulo 5. Additionally, since 3 is congruent to 1 modulo 2, it follows that 3^100 is congruent to 1 modulo 2 as well. Combining these results, we conclude that 3^100 is congruent to 1 modulo 10. Thus, the units digit of 3^100 is 1.
Math100
Messages
817
Reaction score
229
Homework Statement
Find the units digit of ## 3^{100} ## by the use of Fermat's theorem.
Relevant Equations
None.
Consider modulo ## 10 ##.
Then ## 10=5\cdot 2 ##.
Applying the Fermat's theorem produces: ## 3^{4}\equiv 1\pmod {5} ##.
This means ## (3^{4})^{25}=3^{100}\equiv 1\pmod {5} ##.
Observe that ## 3\equiv 1\pmod {2}\implies 3^{100}\equiv 1\pmod {2} ##.
Now we have ## 5\mid (3^{100}-1) ## and ## 2\mid (3^{100}-1) ##.
Thus ## (5\cdot 2)\mid (3^{100}-1)\implies 3^{100}\equiv 1\pmod {10} ##.
Therefore, the units digit of ## 3^{100} ## is ## 1 ##.
 
Physics news on Phys.org
Well written!
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K