Find the value of ##N## in the logarithm problem

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Logarithm Value
AI Thread Summary
The discussion focuses on solving the logarithmic equations to find the value of N. The initial equations provided are log_8(N) = (1/2)p and log_2(2N) = q, leading to the relationships 8^(0.5p) = N and 2^q = 2N. By solving the simultaneous equations q - 1.5p = 1 and q - p = 4, the values q = 10 and p = 6 are derived. This results in N being calculated as 512. Additionally, there are suggestions for improving clarity and consistency in mathematical notation.
chwala
Gold Member
Messages
2,825
Reaction score
413
Homework Statement
If ##2log_8N=p##, ##log_2 (2N)=q##, ##q-p=4## then find ##N##
Relevant Equations
Logs
My approach is as follows;
$$\log_8 N= \frac {1}{2} p$$
$$\log_2 (2N)=q$$
$$→8^{\scriptstyle\frac 1 2} = N$$
$$ 2^q=2N$$
$$2^{\scriptstyle\frac 3 2} =N$$
$$2^q= 2N$$
then from 1 and 2, it follows that,
$$2^{q-1.5p} =2,$$ on solving the simultaneous equation;

$$q-1.5p=1, q-p=4$$, we get ##q=10## and ##p=6##
##2^{10}=2N##
##N=512##

any other ways...cheers guys
 
Last edited:
Physics news on Phys.org
<br /> \begin{split}<br /> 4 &amp;= \log_2(2N) - 2\log_8(N) \\<br /> &amp;= 1 + \log_2(N)\left(1 - \frac{2}{\log_2(8)} \right) \\<br /> &amp;= 1 + \log_2(N)\left(1 - \frac{2}{3}\right)\\<br /> &amp;= 1 + \tfrac{1}{3}\log_2(N)\end{split} Hence N = 2^{9}.
 
chwala said:
Homework Statement:: If ##2log_8N=p##, ##log_2 2N=q##, ##q-p=4## then find ##N##
Relevant Equations:: Logs

My approach is as follows;
$$log_8 N= \frac {1}{2} P$$
$$log_2 2N=q$$
$$→8^{0.5p} = N$$
$$ 2^q=2N$$
$$2^{1.5p} =N...1$$
$$2^q= 2N...2$$
then from 1 and 2, it follows that,
$$2^{q-1.5p} =2,$$ on solving the simultaneous equation;

$$q-1.5p=1, q-p=4$$, we get ##q=10## and ##p=6##
##2^{10}=2N##
##N=512##

any other ways...cheers guys
Hello there !

Not much room for improvement, but I'm prepared to play devil's advocate :smile:

Clarity:
Don't write ##\log_2 2N=q\qquad ## but ##\log_2( 2N)=q##​
Don't use ##\rightarrow\ ## but ##\Rightarrow\ ## (##\Rightarrow##, ##\ ##not ##rightarrow##)​
(single arrow means 'goes to', double arrow means if 'left' is true then 'right' is true )​
Consistency:
Don't write ##\log_8 N= \frac {1}{2} P\qquad ## but ##\log_8 N= \frac {1}{2} p##​
(case consistency is important)​

##\LaTeX##:

Use ##\log\ ##, ##\ ## not ##log\ ## (##\log##, ##\ ##not ##log##)​
(log is an operator name, not the product of the three variables ##l##, ##o## and ##g##)​
(See 'Special functions' here)​
Use ##\frac 1 2 \ ## and ##\frac 3 2\ ## , not ##\scriptstyle {0.5} \ ## and ##\scriptstyle {1.5} \ ##.​
Often ##\frac 1 2 \ ## (\scriptstyle \frac 1 2 when in displayed math mode) looks better than ##\displaystyle \frac 1 2 \ ##. And vice versa (\displaystyle \frac 1 2 when in in-line ##\TeX## mode).

Displayed math allows you to combine a few things on a line:​
$$\qquad \log_8 N= {\scriptstyle \frac {1}{2}} p\qquad \Rightarrow\qquad 8^{0.5p} = N\qquad \Rightarrow\qquad 2^{\frac 3 2 p}=N$$ $$\log_2( 2N)=q \qquad \Rightarrow\qquad 2^q= 2N$$

Dont use ##...1\ ## etc for equation numbers.​
Alignment is a nightmare and it looks ugly. Instead, learn about environments​
(See 'Multiple lines' here. To suppress equation numbers confusion, use {align*} and manually add equation numbers with ##\tag 1## etc. )​
My 'best shot' (still unhappy because the double arrows don't align :mad: )​
$$\begin{align*}
\log_8 N&= {\scriptstyle \frac {1}{2}} p & \Rightarrow \qquad 8^{\frac 1 2p} &= N &\Rightarrow 2^{\frac 3 2 p}&=N\tag 1 \\
\log_2( 2N)&=\ q & \Rightarrow \qquad 2^q&= 2N \tag 2 \end{align*} $$
##\ ##​
 
  • Like
Likes chwala, SammyS and Mark44
BvU said:
Hello there !

Not much room for improvement, but I'm prepared to play devil's advocate :smile:

Clarity:
Don't write ##\log_2 2N=q\qquad ## but ##\log_2( 2N)=q##​
Don't use ##\rightarrow\ ## but ##\Rightarrow\ ## (##\Rightarrow##, ##\ ##not ##rightarrow##)​
(single arrow means 'goes to', double arrow means if 'left' is true then 'right' is true )​
Consistency:
Don't write ##\log_8 N= \frac {1}{2} P\qquad ## but ##\log_8 N= \frac {1}{2} p##​
(case consistency is important)​

##\LaTeX##:

Use ##\log\ ##, ##\ ## not ##log\ ## (##\log##, ##\ ##not ##log##)​
(log is an operator name, not the product of the three variables ##l##, ##o## and ##g##)​
(See 'Special functions' here)​
Use ##\frac 1 2 \ ## and ##\frac 3 2\ ## , not ##\scriptstyle {0.5} \ ## and ##\scriptstyle {1.5} \ ##.​
Often ##\frac 1 2 \ ## (\scriptstyle \frac 1 2 when in displayed math mode) looks better than ##\displaystyle \frac 1 2 \ ##. And vice versa (\displaystyle \frac 1 2 when in in-line ##\TeX## mode).

Displayed math allows you to combine a few things on a line:​
$$\qquad \log_8 N= {\scriptstyle \frac {1}{2}} p\qquad \Rightarrow\qquad 8^{0.5p} = N\qquad \Rightarrow\qquad 2^{\frac 3 2 p}=N$$ $$\log_2( 2N)=q \qquad \Rightarrow\qquad 2^q= 2N$$

Dont use ##...1\ ## etc for equation numbers.​
Alignment is a nightmare and it looks ugly. Instead, learn about environments​
(See 'Multiple lines' here. To suppress equation numbers confusion, use {align*} and manually add equation numbers with ##\tag 1## etc. )​
My 'best shot' (still unhappy because the double arrows don't align :mad: )​
$$\begin{align*}
\log_8 N&= {\scriptstyle \frac {1}{2}} p & \Rightarrow \qquad 8^{\frac 1 2p} &= N &\Rightarrow 2^{\frac 3 2 p}&=N\tag 1 \\
\log_2( 2N)&=\ q & \Rightarrow \qquad 2^q&= 2N \tag 2 \end{align*} $$
##\ ##​

Thanks bvu, I am learning this beautiful latex language. Cheers mate.
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top