Find the value of ##N## in the logarithm problem

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Logarithm Value
Click For Summary

Homework Help Overview

The discussion revolves around finding the value of ##N## in a logarithmic context, specifically involving the equations ##\log_8 N## and ##\log_2 (2N)##. Participants are exploring relationships between these logarithmic expressions and their implications.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning

Approaches and Questions Raised

  • Some participants present their approaches using logarithmic identities and simultaneous equations to express ##N## in terms of ##p## and ##q##. Others question the clarity and consistency of notation in the mathematical expressions provided.

Discussion Status

Multiple approaches to the problem have been shared, with participants offering different methods to derive the value of ##N##. There is ongoing dialogue regarding the clarity of mathematical notation and LaTeX formatting, indicating a focus on improving communication within the discussion.

Contextual Notes

Participants note the importance of consistent notation and clarity in mathematical expressions, suggesting that these factors may influence understanding and interpretation of the problem.

chwala
Gold Member
Messages
2,828
Reaction score
425
Homework Statement
If ##2log_8N=p##, ##log_2 (2N)=q##, ##q-p=4## then find ##N##
Relevant Equations
Logs
My approach is as follows;
$$\log_8 N= \frac {1}{2} p$$
$$\log_2 (2N)=q$$
$$→8^{\scriptstyle\frac 1 2} = N$$
$$ 2^q=2N$$
$$2^{\scriptstyle\frac 3 2} =N$$
$$2^q= 2N$$
then from 1 and 2, it follows that,
$$2^{q-1.5p} =2,$$ on solving the simultaneous equation;

$$q-1.5p=1, q-p=4$$, we get ##q=10## and ##p=6##
##2^{10}=2N##
##N=512##

any other ways...cheers guys
 
Last edited:
Physics news on Phys.org
<br /> \begin{split}<br /> 4 &amp;= \log_2(2N) - 2\log_8(N) \\<br /> &amp;= 1 + \log_2(N)\left(1 - \frac{2}{\log_2(8)} \right) \\<br /> &amp;= 1 + \log_2(N)\left(1 - \frac{2}{3}\right)\\<br /> &amp;= 1 + \tfrac{1}{3}\log_2(N)\end{split} Hence N = 2^{9}.
 
  • Like
Likes   Reactions: chwala
chwala said:
Homework Statement:: If ##2log_8N=p##, ##log_2 2N=q##, ##q-p=4## then find ##N##
Relevant Equations:: Logs

My approach is as follows;
$$log_8 N= \frac {1}{2} P$$
$$log_2 2N=q$$
$$→8^{0.5p} = N$$
$$ 2^q=2N$$
$$2^{1.5p} =N...1$$
$$2^q= 2N...2$$
then from 1 and 2, it follows that,
$$2^{q-1.5p} =2,$$ on solving the simultaneous equation;

$$q-1.5p=1, q-p=4$$, we get ##q=10## and ##p=6##
##2^{10}=2N##
##N=512##

any other ways...cheers guys
Hello there !

Not much room for improvement, but I'm prepared to play devil's advocate :smile:

Clarity:
Don't write ##\log_2 2N=q\qquad ## but ##\log_2( 2N)=q##​
Don't use ##\rightarrow\ ## but ##\Rightarrow\ ## (##\Rightarrow##, ##\ ##not ##rightarrow##)​
(single arrow means 'goes to', double arrow means if 'left' is true then 'right' is true )​
Consistency:
Don't write ##\log_8 N= \frac {1}{2} P\qquad ## but ##\log_8 N= \frac {1}{2} p##​
(case consistency is important)​

##\LaTeX##:

Use ##\log\ ##, ##\ ## not ##log\ ## (##\log##, ##\ ##not ##log##)​
(log is an operator name, not the product of the three variables ##l##, ##o## and ##g##)​
(See 'Special functions' here)​
Use ##\frac 1 2 \ ## and ##\frac 3 2\ ## , not ##\scriptstyle {0.5} \ ## and ##\scriptstyle {1.5} \ ##.​
Often ##\frac 1 2 \ ## (\scriptstyle \frac 1 2 when in displayed math mode) looks better than ##\displaystyle \frac 1 2 \ ##. And vice versa (\displaystyle \frac 1 2 when in in-line ##\TeX## mode).

Displayed math allows you to combine a few things on a line:​
$$\qquad \log_8 N= {\scriptstyle \frac {1}{2}} p\qquad \Rightarrow\qquad 8^{0.5p} = N\qquad \Rightarrow\qquad 2^{\frac 3 2 p}=N$$ $$\log_2( 2N)=q \qquad \Rightarrow\qquad 2^q= 2N$$

Dont use ##...1\ ## etc for equation numbers.​
Alignment is a nightmare and it looks ugly. Instead, learn about environments​
(See 'Multiple lines' here. To suppress equation numbers confusion, use {align*} and manually add equation numbers with ##\tag 1## etc. )​
My 'best shot' (still unhappy because the double arrows don't align :mad: )​
$$\begin{align*}
\log_8 N&= {\scriptstyle \frac {1}{2}} p & \Rightarrow \qquad 8^{\frac 1 2p} &= N &\Rightarrow 2^{\frac 3 2 p}&=N\tag 1 \\
\log_2( 2N)&=\ q & \Rightarrow \qquad 2^q&= 2N \tag 2 \end{align*} $$
##\ ##​
 
  • Like
Likes   Reactions: chwala, SammyS and Mark44
BvU said:
Hello there !

Not much room for improvement, but I'm prepared to play devil's advocate :smile:

Clarity:
Don't write ##\log_2 2N=q\qquad ## but ##\log_2( 2N)=q##​
Don't use ##\rightarrow\ ## but ##\Rightarrow\ ## (##\Rightarrow##, ##\ ##not ##rightarrow##)​
(single arrow means 'goes to', double arrow means if 'left' is true then 'right' is true )​
Consistency:
Don't write ##\log_8 N= \frac {1}{2} P\qquad ## but ##\log_8 N= \frac {1}{2} p##​
(case consistency is important)​

##\LaTeX##:

Use ##\log\ ##, ##\ ## not ##log\ ## (##\log##, ##\ ##not ##log##)​
(log is an operator name, not the product of the three variables ##l##, ##o## and ##g##)​
(See 'Special functions' here)​
Use ##\frac 1 2 \ ## and ##\frac 3 2\ ## , not ##\scriptstyle {0.5} \ ## and ##\scriptstyle {1.5} \ ##.​
Often ##\frac 1 2 \ ## (\scriptstyle \frac 1 2 when in displayed math mode) looks better than ##\displaystyle \frac 1 2 \ ##. And vice versa (\displaystyle \frac 1 2 when in in-line ##\TeX## mode).

Displayed math allows you to combine a few things on a line:​
$$\qquad \log_8 N= {\scriptstyle \frac {1}{2}} p\qquad \Rightarrow\qquad 8^{0.5p} = N\qquad \Rightarrow\qquad 2^{\frac 3 2 p}=N$$ $$\log_2( 2N)=q \qquad \Rightarrow\qquad 2^q= 2N$$

Dont use ##...1\ ## etc for equation numbers.​
Alignment is a nightmare and it looks ugly. Instead, learn about environments​
(See 'Multiple lines' here. To suppress equation numbers confusion, use {align*} and manually add equation numbers with ##\tag 1## etc. )​
My 'best shot' (still unhappy because the double arrows don't align :mad: )​
$$\begin{align*}
\log_8 N&= {\scriptstyle \frac {1}{2}} p & \Rightarrow \qquad 8^{\frac 1 2p} &= N &\Rightarrow 2^{\frac 3 2 p}&=N\tag 1 \\
\log_2( 2N)&=\ q & \Rightarrow \qquad 2^q&= 2N \tag 2 \end{align*} $$
##\ ##​

Thanks bvu, I am learning this beautiful latex language. Cheers mate.
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K