Find the values of ## n\geq 1 ## for which ## 1+2+3+\dotsb +n ##.

  • Thread starter Thread starter Math100
  • Start date Start date
Click For Summary
SUMMARY

The values of ## n \geq 1 ## for which the sum of factorials ## f(n) = 1! + 2! + 3! + \dotsb + n! ## is a perfect square are definitively ## n = 1 ## and ## n = 3 ##. For all ## n > 3 ##, it has been established that ## f(n) \equiv 3 \pmod{10} ##, which indicates that no perfect squares exist beyond these values. The analysis shows that for ## n \geq 2 ##, the function is odd, and for ## n \geq 5 ##, it is divisible by ## 5 ##, further confirming the results.

PREREQUISITES
  • Understanding of factorial notation and properties
  • Familiarity with modular arithmetic
  • Basic knowledge of perfect squares
  • Ability to analyze sequences and series
NEXT STEPS
  • Research properties of factorial growth and its implications on number theory
  • Study modular arithmetic, specifically congruences and their applications
  • Explore the relationship between factorial sums and perfect squares
  • Investigate further into the behavior of sequences defined by recursive relations
USEFUL FOR

Mathematicians, number theorists, and students studying advanced algebra or combinatorics, particularly those interested in factorial functions and their properties.

Math100
Messages
817
Reaction score
230
Homework Statement
Find the values of ## n\geq 1 ## for which ## 1!+2!+3!+\dotsb +n! ## is a perfect square.
Relevant Equations
None.
Let ## f(n)=1!+2!+3!+\dotsb +n! ## for ## n\in\mathbb{N} ##.
Then every ## k! ## is even except ## 1! ##.
This means ## f(n) ## is odd for ## n>1 ##.
Since each ## k! ## is divisible by ## 5 ## for ## k\geq 5 ##,
it follows that ## f(4)\pmod {5}\equiv (1+2+6+24)\pmod {5}\equiv 3\pmod {5} ##.
Thus, ## f(n)\equiv 3\pmod {2} ## and ## f(n)\equiv 3\pmod {5} ## for ## n>3 ##, which implies that ## f(n)\equiv 3\pmod {10} ##.
Note that ## f(1)=1^{2}, f(2)=3 ## and ## f(3)=3^{2} ##, where ## f(2)=3 ## isn't a perfect square.
Therefore, the values of ## n\geq 1 ## for which ## 1!+2!+3!+\dotsb +n! ## is a perfect square are ## n=1, 3 ##.
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
This is just a checking of your result.

for n ##\geq## 8 f(n)##\equiv 0##(mod 9)
So f(n) is written as ##f(n)=3^2 A##
for n ##\geq## 9 f(n)##\equiv 3##(mod 10)
So the first place of A is 7. Any square number does not have 7 in its first place. So f(n) for n ##\geq## 9 is not square number.

for n ##\geq## 1 f(n)##\equiv 1##(mod 2)
for n ##\geq## 2 f(n)##\equiv 0##(mod 3)
for n ##\geq## 3 f(n)##\equiv 1##(mod 4)
for n ##\geq## 4 f(n)##\equiv 3##(mod 5)
for n ##\geq## 5 f(n)##\equiv 3##(mod 6)
for n ##\geq## 6 f(n)##\equiv 5##(mod 7)
for n ##\geq## 7 f(n)##\equiv 1##(mod 8)
for n ##\geq## 8 f(n)##\equiv 0##(mod 9)
for n ##\geq## 9 f(n)##\equiv 3##(mod 10)
 
Last edited:
Math100 said:
Therefore, the values of ## n\geq 1 ## for which ## 1!+2!+3!+\dotsb +n! ## is a perfect square are ## n=1, 3 ##.
You have not proven that. You have only shown that 1 and 3 are such values and 2 is not. You need to prove there are no values higher than 3. You could try using your mod results to do that.
 
  • Like
Likes   Reactions: Delta2
andrewkirk said:
You have not proven that. You have only shown that 1 and 3 are such values and 2 is not. You need to prove there are no values higher than 3. You could try using your mod results to do that.
Yes, true but he has prove that ##f(n)=3 \pmod {10}## for ##n>3## and it is kind of trivial to show that ##a^2 \pmod {10}\neq 3## for any natural number ##a##, so ##f(n)\neq a^2## for any natural number ##a##..
 
  • Like
Likes   Reactions: Math100 and anuttarasammyak
Math100 said:
Homework Statement:: Find the values of ## n\geq 1 ## for which ## 1!+2!+3!+\dotsb +n! ## is a perfect square.
Relevant Equations:: None.

Let ## f(n)=1!+2!+3!+\dotsb +n! ## for ## n\in\mathbb{N} ##.
I would deal with the small cases by hand:

##f(1)=1 ## and ##f(3)=9## are perfect squares, ##f(2)=3## and ##f(4)=33## are not.
Math100 said:
Then every ## k! ## is even except ## 1! ##.
This means ## f(n) ## is odd for ## n>1 ##.
Since each ## k! ## is divisible by ## 5 ## for ## k\geq 5 ##,
it follows that ## f(4)\pmod {5}\equiv (1+2+6+24)\pmod {5}\equiv 3\pmod {5} ##.
A typo? It follows ##f(n) \equiv f(4) \equiv 3 \pmod 5.## Now conclude with @Delta2 's proposal in post #4:

##a^2 \equiv c \in \{0,1,4\} \pmod 5## so ##f(n)\neq a^2## for any integer ##a.##

Math100 said:
Thus, ## f(n)\equiv 3\pmod {2} ## and ## f(n)\equiv 3\pmod {5} ## for ## n>3 ##, which implies that ## f(n)\equiv 3\pmod {10} ##.
Note that ## f(1)=1^{2}, f(2)=3 ## and ## f(3)=3^{2} ##, where ## f(2)=3 ## isn't a perfect square.
Therefore, the values of ## n\geq 1 ## for which ## 1!+2!+3!+\dotsb +n! ## is a perfect square are ## n=1, 3 ##.
 
  • Like
Likes   Reactions: Math100 and Delta2

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
6
Views
3K