MHB Finding a Minimal Vertex Cover & Max Sets for a Graph

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Graph
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the following graph:
View attachment 5841 I want to find a minimal vertex cover.
I thought that the set $C^\star=\{4,5,6\}$ is a minimal vertx cover. Is this correct? How could we prove it? (Wondering) Then I want to find a vertex cover using the following approximation algorithm
Code:
C <- 0 
while E ≠ 0 do 
    choose e = (u,v) ∈ E arbitrary 
    C <- C U {u,v} 
    G <- G - {u,v} 
return C

I have done the following:
Suppose we start with e=(1,4) then C={1,4} and the graph is the following:
View attachment 5842
Then when we choose e=(5,7) we have C={1,4,5,7} and the graph will look as follows:
View attachment 5843
Then we can choose e=(2,3) and then we have C={1,2,3,4,5,7} and the graph will be:
View attachment 5844
Have we finished now?
Is a minimal vertex cover the set $C=\{1,2,3,4,5,7\}$ ? (Wondering)

Suppose we start with e=(4,5) then C={4,5} and the graph is the following:
View attachment 5845
Then when we choose e=(3,6) we have C={3,4,5,6} and the graph will look as follows:
View attachment 5846
Then we choose e=(1,2) and then we have C={1,2,3,4,5,6} and the graph will be:
View attachment 5847
So, a minimal vertex cover is the set $C=\{1,2,3,4,5,6\}$, right? (Wondering)

Does this mean that no matter which edge we choose at each step the minimal vertex cover will contain $6$ vertices? (Wondering) After that I want to find a maximal independent set of vertices and a maximal clique. Could you give me some hints how we could find them? (Wondering)
 

Attachments

  • Vertex.png
    Vertex.png
    4.1 KB · Views: 97
  • Vertex.png
    Vertex.png
    2.6 KB · Views: 103
  • Vertex.png
    Vertex.png
    1.7 KB · Views: 99
  • Vertex.png
    Vertex.png
    505 bytes · Views: 96
  • Vertex.png
    Vertex.png
    3.1 KB · Views: 92
  • Vertex.png
    Vertex.png
    1.5 KB · Views: 105
  • Vertex.png
    Vertex.png
    477 bytes · Views: 94
Physics news on Phys.org
mathmari said:
I thought that the set $C^\star=\{4,5,6\}$ is a minimal vertx cover.
No, the edge (1, 2) is not incident to any vertex in {4, 5, 6}.

mathmari said:
So, a minimal vertex cover is the set $C=\{1,2,3,4,5,6\}$, right?
This is a vertex cover, but it is not minimal because vertex 1 can be removed.
 
Evgeny.Makarov said:
No, the edge (1, 2) is not incident to any vertex in {4, 5, 6}.

Oh yes... So, is it maybe $C^\star=\{1,2,3,7\}$ ? (Wondering)
Evgeny.Makarov said:
This is a vertex cover, but it is not minimal because vertex 1 can be removed.

At the step when we choose e=(1,2) do we not have to add both vertices, $1$ and $2$, to the set $C$ according to the algorithm? (Wondering)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top