MHB Finding the PMF of Y with Known X

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
Click For Summary
To find the PMF of Y given X, where Y is defined as Y = sin(π/(2X)) and p_X[k] = 1/5 for k = 0, 1, 2, 3, 4, one must consider the transformation of the random variable X. The discussion highlights the challenge of defining Y when X equals zero, as it leads to an undefined expression. Participants express confusion regarding the notation p_X[k] and its implication for the probability distribution of X. The thread indicates that the problem has been previously addressed, yet no clear solution is provided within the discussion. Overall, the focus remains on understanding the transformation and its implications for calculating the PMF of Y.
Dustinsfl
Messages
2,217
Reaction score
5
How do I find the PMF of Y when I know X?
\[
Y = \sin\Big(\frac{\pi}{2X}\Big)
\]
and
\[
p_X[k] = \frac{1}{5}
\]
for \(k = 0,1,\ldots, 4\).
 
Physics news on Phys.org
Maybe there're several ways to solve this problem. It's clear that $Y$ is a transformation of $X$. So have you seen any theorems about characteristic funtions of transformated random variables?

EDIT:
I now see that this problem is already solved.
 
Siron said:
...EDIT:
I now see that this problem is already solved.

Well, the [SOLVED] prefix has been added, but I see no solution...
 
dwsmith said:
How do I find the PMF of Y when I know X?
\[
Y = \sin\Big(\frac{\pi}{2X}\Big)
\]
and
\[
p_X[k] = \frac{1}{5}
\]
for \(k = 0,1,\ldots, 4\).

There is a point not clear: writing $\displaystyle p_X[k] = \frac{1}{5}, k= 0,1,2,3,4$ means writing $\displaystyle P\{X=k \} = \frac{1}{5}, k= 0,1,2,3,4$?...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
There is a point not clear: writing $\displaystyle p_X[k] = \frac{1}{5}, k= 0,1,2,3,4$ means writing $\displaystyle P\{X=k \} = \frac{1}{5}, k= 0,1,2,3,4$?...

Kind regards

$\chi$ $\sigma$

The reason of my question is that for X=0 defining $\displaystyle Y = \sin \frac{\pi}{2\ X}$ is a little difficult task (Dull)...

Kind regards

$\chi$ $\sigma$
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K