MHB Finding x in Logarithmic Equation

  • Thread starter Thread starter hola1
  • Start date Start date
  • Tags Tags
    Logarithmic
Click For Summary
The discussion revolves around solving the logarithmic equation log2(2^(x-1) + 3^(x+1)) = 2x - log2(3^x), leading to the solution x = -1.70951. Participants outline steps to manipulate the equation using logarithmic properties, ultimately equating logs to simplify the expression. The transformation results in a form that can be approached with numerical methods, as an algebraic solution is not feasible. The final consensus confirms the numerical solution aligns with the provided answer. The discussion emphasizes the complexity of solving logarithmic equations and the utility of numerical methods in such cases.
hola1
Messages
1
Reaction score
0
Hi, sorry if it's not in the right subforum. idk how to solve x:
http://puu.sh/2Lbb1.png
The answer is x = -1.70951.
how do we get there? please explain everystep. thanks :3

****someone made it this far, idk if it is the correct path:
log2 (2^(x-1)+3^(x+1)) = 2x - log2 (3^x)
log2 (2^(x-1)+3^(x+1)) + log2 (3^x) = 2x
because of the rule log(m) + log(n) = log(mn),
log2 ((2^(x-1)+3^(x+1))*(3^x) = 2x
log2 ((2^(x-1)+3^(x+1))*(3^x) = 2x
log ((2^(x-1)+3^(x+1))*(3^x) / log 2 = 2x
log ((2^(x-1)+3^(x+1))*(3^x) = 2x * log 2
log ((2^(x-1)+3^(x+1))*(3^x) = log 2^(2x)
equate the logs
(2^(x-1) + 3^(x+1))*(3^x) = 2^(2x)
2^(x-1) * 3^x + 3^(2x+1) = 2^(2x)
3^(2x+1) = 2^(2x) - 2^(x-1) * 3^x
 
Mathematics news on Phys.org
Re: logarithm

Seems like kind of a struggle, but you are getting good practice playing with the logarithms.

I might do this:

\log_{2}\left(2^{x-1}+3^{x+1}\right) = 2x - \log_{2}\left(3^{x}\right) = \log_{2}\left(2^{2x}\right)- \log_{2}\left(3^{x}\right) = \log_{2}\left(\dfrac{2^{2x}}{3^{x}}\right)

This leads a little more quickly to a version with no logs which may not be as useful as you think.

2^{x-1} + 3^{x+1} = 2^{2x}\cdot 3^{-x} = \left(\dfrac{4}{3}\right)^{x}

There is no way to solve that, so you are really left with numerical methods, which probably causes you to reintroduce the logarithms.

Can you take it from there?

I get x = -1.70951129135145, which certainly agrees with your given solution.
 
Last edited:
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K