For ## n\geq 1 ##, use congruence theory to establish?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Theory
AI Thread Summary
The discussion focuses on proving the divisibility statement that for natural numbers n≥1, 13 divides the expression 3^(n+2) + 4^(2n+1). The proof employs congruence theory, showing that the expression simplifies to 0 modulo 13. The steps include breaking down the terms and using properties of congruences to arrive at the conclusion. A suggestion is made to improve clarity by using parentheses in the notation. Overall, the proof effectively establishes the required divisibility.
Math100
Messages
813
Reaction score
229
Homework Statement
For ## n\geq 1 ##, use congruence theory to establish the following divisibility statement:
## 13\mid 3^{n+2}+4^{2n+1} ##.
Relevant Equations
None.
Proof

Let ## n\geq 1 ## be a natural number.
Then \begin{align*} 3^{n+2}+4^{2n+1}&\equiv 3^{n}\cdot 3^{2}+(4^{2})^{n}\cdot 4\pmod {13}\\
&\equiv (3^{n}\cdot 9+16^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 9+3^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 13)\pmod {13}\\
&\equiv 0\pmod {13}.
\end{align*}
Therefore, ## 13\mid 3^{n+2}+4^{2n+1} ## for ## n\geq 1 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: For ## n\geq 1 ##, use congruence theory to establish the following divisibility statement:
## 13\mid 3^{n+2}+4^{2n+1} ##.
Relevant Equations:: None.

Proof

Let ## n\geq 1 ## be a natural number.
Then \begin{align*} 3^{n+2}+4^{2n+1}&\equiv 3^{n}\cdot 3^{2}+(4^{2})^{n}\cdot 4\pmod {13}\\
&\equiv (3^{n}\cdot 9+16^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 9+3^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 13)\pmod {13}\\
&\equiv 0\pmod {13}.
\end{align*}
Therefore, ## 13\mid 3^{n+2}+4^{2n+1} ## for ## n\geq 1 ##.
Looks good.
 
Math100 said:
Homework Statement:: For ## n\geq 1 ##, use congruence theory to establish the following divisibility statement:
## 13\mid 3^{n+2}+4^{2n+1} ##.
Relevant Equations:: None.

Proof

Let ## n\geq 1 ## be a natural number.
Then \begin{align*} 3^{n+2}+4^{2n+1}&\equiv 3^{n}\cdot 3^{2}+(4^{2})^{n}\cdot 4\pmod {13}\\
&\equiv (3^{n}\cdot 9+16^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 9+3^{n}\cdot 4)\pmod {13}\\
&\equiv (3^{n}\cdot 13)\pmod {13}\\
&\equiv 0\pmod {13}.
\end{align*}
Therefore, ## 13\mid 3^{n+2}+4^{2n+1} ## for ## n\geq 1 ##.
Perfect. Only a minor thing: It is generally better to group things that belong together with parentheses. So ##13\mid (3^{n+2}+4^{2n+1}) ## would be better in my opinion. It is not important in this case since everybody can see that ##13\nmid 3^m## but it is good to get used to it for any linear notation.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks
Essentially I just have this problem that I'm stuck on, on a sheet about complex numbers: Show that, for ##|r|<1,## $$1+r\cos(x)+r^2\cos(2x)+r^3\cos(3x)...=\frac{1-r\cos(x)}{1-2r\cos(x)+r^2}$$ My first thought was to express it as a geometric series, where the real part of the sum of the series would be the series you see above: $$1+re^{ix}+r^2e^{2ix}+r^3e^{3ix}...$$ The sum of this series is just: $$\frac{(re^{ix})^n-1}{re^{ix} - 1}$$ I'm having some trouble trying to figure out what to...
Back
Top