For ## n\geq 1 ##, use congruence theory to establish....

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Theory
Click For Summary
For natural numbers n≥1, it is established that 27 divides the expression 2^(5n+1) + 5^(n+2) using congruence theory. The proof demonstrates that the expression simplifies to 0 modulo 27 through a series of congruences. Specifically, it shows that 2^(5n) and 5^n can be manipulated to reveal that their sum is congruent to 0 modulo 27. The discussion also emphasizes the importance of proper notation, particularly the use of parentheses to clarify the relationship between addition and multiplication in the divisibility statement. Overall, the proof effectively confirms the divisibility condition for all natural numbers n≥1.
Math100
Messages
817
Reaction score
229
Homework Statement
For ## n\geq 1 ##, use congruence theory to establish the following divisibility statement:
## 27\mid (2^{5n+1}+5^{n+2}) ##.
Relevant Equations
None.
Proof:

Let ## n\geq 1 ## be a natural number.
Then \begin{align*} 2^{5n+1}+5^{n+2}&\equiv (2^{5n}\cdot 2+5^{n}\cdot 5^{2})\pmod {27}\\
&\equiv [(2^{5})^{n}\cdot 2+5^{n}\cdot 25]\pmod {27}\\
&\equiv (32^{n}\cdot 2+5^{n}\cdot 25)\pmod {27}\\
&\equiv (5^{n}\cdot 2+5^{n}\cdot 25)\pmod {27}\\
&\equiv (5^{n}\cdot 27)\pmod {27}\\
&\equiv 0\pmod {27}.
\end{align*}
Therefore, ## 27\mid (2^{5n+1}+5^{n+2}) ## for ## n\geq 1 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: For ## n\geq 1 ##, use congruence theory to establish the following divisibility statement:
## 27\mid (2^{5n+1}+5^{n+2}) ##.
Relevant Equations:: None.

Proof:

Let ## n\geq 1 ## be a natural number.
Then \begin{align*} 2^{5n+1}+5^{n+2}\equiv (2^{5n}\cdot 2+5^{n}\cdot 5^{2})\pmod {27}\\
&\equiv [(2^{5})^{n}\cdot 2+5^{n}\cdot 25]\pmod {27}\\
&\equiv (32^{n}\cdot 2+5^{n}\cdot 25)\pmod {27}\\
&\equiv (5^{n}\cdot 2+5^{n}\cdot 25)\pmod {27}\\
&\equiv (5^{n}\cdot 27)\pmod {27}\\
&\equiv 0\pmod {27}.
\end{align*}
Therefore, ## 27\mid (2^{5n+1}+5^{n+2}) ## for ## n\geq 1 ##.
You could simply establish that ##2^5=32## and that ##32\equiv 5 \pmod {27} ## . Then the actual proof is a snap
 
Last edited:
Math100 said:
Homework Statement:: For ## n\geq 1 ##, use congruence theory to establish the following divisibility statement:
## 27\mid (2^{5n+1}+5^{n+2}) ##.
Relevant Equations:: None.

Proof:

Let ## n\geq 1 ## be a natural number.
Then \begin{align*} 2^{5n+1}+5^{n+2}&\equiv (2^{5n}\cdot 2+5^{n}\cdot 5^{2})\pmod {27}\\
&\equiv [(2^{5})^{n}\cdot 2+5^{n}\cdot 25]\pmod {27}\\
&\equiv (32^{n}\cdot 2+5^{n}\cdot 25)\pmod {27}\\
&\equiv (5^{n}\cdot 2+5^{n}\cdot 25)\pmod {27}\\
&\equiv (5^{n}\cdot 27)\pmod {27}\\
&\equiv 0\pmod {27}.
\end{align*}
Therefore, ## 27\mid (2^{5n+1}+5^{n+2}) ## for ## n\geq 1 ##.
Correct. And thanks for the ##()##.

Last time I missed to explain better why the parentheses around ## 27\mid (2^{5n+1}+5^{n+2}) ## are better: The "divides" symbol belongs to multiplication and the plus sign belongs to addition. That's why the parentheses around the addition are reasonable; the same as the distributive law.
 
I tried to combine those 2 formulas but it didn't work. I tried using another case where there are 2 red balls and 2 blue balls only so when combining the formula I got ##\frac{(4-1)!}{2!2!}=\frac{3}{2}## which does not make sense. Is there any formula to calculate cyclic permutation of identical objects or I have to do it by listing all the possibilities? Thanks

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K