For ## n\geq 1 ##, use congruence theory to establish....

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Theory
Click For Summary

Homework Help Overview

The discussion revolves around using congruence theory to establish a divisibility statement involving natural numbers. Specifically, participants are examining the expression \( 5^{2n} + 3 \cdot 2^{5n-2} \) and its divisibility by 7 for \( n \geq 1 \).

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore congruence relations and manipulations to demonstrate the divisibility condition. There are attempts to simplify expressions and verify equivalences modulo 7.

Discussion Status

The discussion includes a proof attempt that outlines steps leading to the conclusion of divisibility by 7. Some participants provide corrections to typographical errors in the proof. There is also feedback regarding the clarity of thread titles, suggesting improvements for future discussions.

Contextual Notes

Participants note the importance of clear and informative titles for threads to facilitate better understanding of the problem being addressed.

Math100
Messages
823
Reaction score
234
Homework Statement
For ## n\geq 1 ##, use congruence theory to establish the following divisibility statement:
## 7\mid (5^{2n}+3\cdot 2^{5n-2}) ##.
Relevant Equations
None.
Proof:

Let ## n\geq 1 ## be a natural number.
Note that ## 5^{2}\equiv 4\pmod 7\implies (5^{2})^{n}\equiv 4^{n}\pmod {7} ##.
Now observe that \begin{align*} (3\cdot 2^{5n-2})&\equiv (3\cdot 2^{3}\cdot 2^{5n-5})\pmod {7}\\
&\equiv [3\cdot 2^{3}\cdot (2^{5})^{n-1}]\pmod {7}\\
&\equiv [24\cdot (2^{5})^{n-1}]\pmod {7}\\
&\equiv (3\cdot 4^{n-1})\pmod {7}\\
&\equiv (-4\cdot 4^{n-1})\pmod {7}\\
&\equiv -(4^{n})\pmod {7}.
\end{align*}
Thus ## 5^{2n}+3\cdot 2^{5n-2}\equiv (4^{n}-4^{n})\pmod 7\equiv 0\pmod 7 ##.
Therefore, ## 7\mid (5^{2n}+3\cdot 2^{5n-2}) ## for ## n\geq 1 ##.
 
Last edited by a moderator:
Physics news on Phys.org
Math100 said:
Homework Statement:: For ## n\geq 1 ##, use congruence theory to establish the following divisibility statement:
## 7\mid (5^{2n}+3\cdot 2^{5n-2}) ##.
Relevant Equations:: None.

Proof:

Let ## n\geq 1 ## be a natural number.
Note that ## 5^{2}\equiv 4\pmod 7\implies (5^{2})^{n}\equiv 4^{n}\pmod {7} ##.
Now observe that \begin{align*} (3\cdot 2^{5n-2})&\equiv (3\cdot 2^{3}\cdot 2^{5n-5})\pmod {7}\\
&\equiv [3\cdot 2^{3}\cdot (2^{5})^{n-1}]\pmod {7}\\
&\equiv [24\cdot (2^{5})^{n-1}]\pmod {7}\\
&\equiv (3\cdot 4^{n-1})\pmod {7}\\
&\equiv (-4\cdot 4^{n-1})\pmod {7}\\
&\equiv -(4^{n})\pmod {7}.
\end{align*}
Thus ## 5^{2n}+3\cdot 2^{5n-2}\equiv (4^{n}-4^{n})\pmod 7\equiv 0\pmod 7 ##.
Therefore, ## 7\mid (5^{2n}+3\cdot 2^{5n-2}) ## for ## n\geq 1 ##.

Correct, up to typos in the last line of the align environment which I corrected. You had { ... ) which does not match and ##-4\cdot 4^{n-1}=(-4^{n-1})## which was wrong.
 
  • Like
Likes   Reactions: Math100
Thank you!
 
  • Like
Likes   Reactions: WWGD
@Math 100, you have started several threads with very generic and uninformative titles such as "For ## n\geq 1 ##, use congruence theory to establish?". For future threads, please provide titles that indicate what it is you're trying to prove. For this thread, a better title would be "Prove that ## 7\mid (5^{2n}+3\cdot 2^{5n-2}) ##".
It's not necessary to give all of the details in the thread, such as ##n \ge 1##.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
3K
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K