Give an example to show that ## a^{k}\equiv b^{k}\pmod {n} ## ....

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Example
Click For Summary
The discussion presents a counterexample to demonstrate that if \( a^k \equiv b^k \pmod{n} \) and \( k \equiv j \pmod{n} \), it does not necessarily imply \( a^j \equiv b^j \pmod{n} \). Using \( a=2, b=3, k=2, j=7, \) and \( n=5 \), it shows that \( 2^2 \equiv 3^2 \pmod{5} \) holds true, but \( 2^7 \not\equiv 3^7 \pmod{5} \). Another example illustrates that integers ending in 1 and 3 can also fail this condition. The discussion emphasizes the importance of understanding modular exponentiation beyond small powers. Ultimately, the examples effectively highlight the limitations of the initial equivalence condition.
Math100
Messages
817
Reaction score
229
Homework Statement
Give an example to show that ## a^{k}\equiv b^{k}\pmod {n} ## and ## k\equiv j\pmod {n} ## need not imply that ## a^{j}\equiv b^{j}\pmod {n} ##.
Relevant Equations
None.
Disproof:

Here is a counterexample:
Let ## a=2, b=3, k=2, j=7 ## and ## n=5 ##.
Then ## 2^{2}\equiv 3^{2}\pmod {5} ## and ## 2\equiv 7\pmod {5} ##.
But note that ## 2^{7}\not\equiv 3^{7}\pmod {5} ##.
Thus ## a^{j}\not\equiv b^{j}\pmod {n} ##.
Therefore, ## a^{k}\equiv b^{k}\pmod {n} ## and ## k\equiv j\pmod {n} ## does not imply that ## a^{j}\equiv b^{j}\pmod {n} ##.
 
  • Like
Likes fresh_42 and Delta2
Physics news on Phys.org
Another counter example
Say a is any decimal positive integer that ends with 1 and b is any decimal positive integer that ends with 3.
a^4 \equiv b^4 \equiv 1 (mod \ 10)
4 \equiv 14 (mod \ 10)
a^{14} \equiv 1(mod \ 10), b^{14} \equiv 9 (mod \ 10)
 
Math100 said:
Homework Statement:: Give an example to show that ## a^{k}\equiv b^{k}\pmod {n} ## and ## k\equiv j\pmod {n} ## need not imply that ## a^{j}\equiv b^{j}\pmod {n} ##.
Relevant Equations:: None.

Disproof:

Here is a counterexample:
Let ## a=2, b=3, k=2, j=7 ## and ## n=5 ##.
Then ## 2^{2}\equiv 3^{2}\pmod {5} ## and ## 2\equiv 7\pmod {5} ##.
But note that ## 2^{7}\not\equiv 3^{7}\pmod {5} ##.
Thus ## a^{j}\not\equiv b^{j}\pmod {n} ##.
Therefore, ## a^{k}\equiv b^{k}\pmod {n} ## and ## k\equiv j\pmod {n} ## does not imply that ## a^{j}\equiv b^{j}\pmod {n} ##.
Looks good.
You might want to at least demonstrate that you actually know that ## 2^{7}\not\equiv 3^{7}\pmod {5} ## .

##2^7 \equiv 3 \pmod 5 ## whereas ##3^7 \equiv 2 \pmod 5 ##
 
Math100 said:
Homework Statement:: Give an example to show that ## a^{k}\equiv b^{k}\pmod {n} ## and ## k\equiv j\pmod {n} ## need not imply that ## a^{j}\equiv b^{j}\pmod {n} ##.
Relevant Equations:: None.

Disproof:

Here is a counterexample:
Let ## a=2, b=3, k=2, j=7 ## and ## n=5 ##.
Then ## 2^{2}\equiv 3^{2}\pmod {5} ## and ## 2\equiv 7\pmod {5} ##.
But note that ## 2^{7}\not\equiv 3^{7}\pmod {5} ##.
Thus ## a^{j}\not\equiv b^{j}\pmod {n} ##.
Therefore, ## a^{k}\equiv b^{k}\pmod {n} ## and ## k\equiv j\pmod {n} ## does not imply that ## a^{j}\equiv b^{j}\pmod {n} ##.
What @SammyS said, looks good. To know ##2^7=128\equiv 3\pmod 5## and ##3^7=2187\equiv 2\pmod 5## would have helped a lot. Most people have only the first, say four or five, powers in mind. It could be omitted in a book but should be told in an exercise.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K