Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!


  1. Aug 31, 2008 #1
    I'm not sure how to solve a differential equation with unit step function, for example:

    x'' + 2x' + x = 10t*u(t), where x(0)=1 and x'(0)=0

    Do I just ignore the u(t) and solve it regularly by normal integration?
  2. jcsd
  3. Aug 31, 2008 #2


    User Avatar
    Homework Helper

    Have you learnt the Laplace transform yet? If you have, transform both sides of the DE, and express L(x), then find the inverse Laplace of that. The fact that they gave you x(0) and x'(0) hints strongly that you should use that.

    To do it without Laplace you'd have to separate the DE for 2 separate intervals, one for which u(t) = 1 and another for u(t)=0, for different intervals of t.
  4. Sep 1, 2008 #3


    User Avatar
    Staff Emeritus
    Science Advisor

    I really dislike the Laplace Transform! Use Defennnder's second method; solve two problems:

    First solve x" + 2x' + x = 0, x(0)= 1, x'(0)= 0. Call that x1(t).

    Then solve x'' + 2x' + x = 10t, x(0)= 1, x'(0)= 0. Call that x2(t).

    x(t)= x1(t) for t< 0 , x2 for t> 0. Of course, they are the same at t= 0.
    Last edited: Sep 1, 2008
  5. Sep 1, 2008 #4


    User Avatar
    Homework Helper

    LOL, well I've grown used to Laplace transform. I guess it's because once you learned something new you'll always try to find ways of applying, even if it results in a less efficient way of doing things. But anyway, it looks as though this problem was catered specially for the Laplace transform.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?