MHB How can I find |A|,having found |UA_{i}^{c}| ?

  • Thread starter Thread starter evinda
  • Start date Start date
AI Thread Summary
The discussion focuses on finding the size of the set A, which consists of permutations in S_n where no element appears in its original position, known as derangements. The user calculates |A_i| and establishes that |A| can be derived from the total permutations |S_n| minus the size of the complement set |A^c|. The formula for |A| is confirmed to be n! times the sum of (-1)^k/k! from k=0 to n. The conversation concludes with an acknowledgment of understanding the concept of derangements.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! :)
I am looking at an exercise,that asks me to find $|A|$,where $A=\{\sigma \in S_{n}:\sigma(i) \neq i \forall i=1,...,n \}$
I found that $|A_{1}|=\{ \sigma \in S_{n}:\sigma(1) \neq 1 \} |=(n-1)!(n-1) $ ,from which we get that : $|A_{i}|=\{ \sigma \in S_{n}:\sigma(i) \neq i \} |=(n-1)!(n-1) $

$A=\bigcap_{i \in[n]} A_{i}$ and $A^{c}=U A_{i}^{c}$

$$|U A_{i}^{c}|=\sum_{k=1}^{n}(-1)^{k-1}\sum_{J \subseteq [n],|J|=k}|\bigcap_{i \in J} A_{i}^{c}|=n!(1-\frac{1}{e})+n!R(n) ,\text{ where } R(n)=\frac{1}{e}-\sum_{k=0}^{n}\frac{(-1)^{k}}{k!}$$

But,how can I find $|A|$ ?
 
Physics news on Phys.org
Obviously, $|A|=|S_n|-|A^c|$.
 
Evgeny.Makarov said:
Obviously, $|A|=|S_n|-|A^c|$.

So,is it $n!-n!(1-\frac{1}{e})-n!R(n) =n!(\frac{1}{e}-R(n)$ ?
 
evinda said:
So,is it $n!-n!(1-\frac{1}{e})-n!R(n) =n!(\frac{1}{e}-R(n))$ ?
Yes. Also, $1/e$ that occurs in $R(n)$ can be eliminated to get
\[
|A|=n!\sum_{k=0}^n\frac{(-1)^k}{k!}
\]
By the way, such permulations are called derangements.
 
Evgeny.Makarov said:
Yes. Also, $1/e$ that occurs in $R(n)$ can be eliminated to get
\[
|A|=n!\sum_{k=0}^n\frac{(-1)^k}{k!}
\]
By the way, such permulations are called derangements.

I understand :) Thank you very much!
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top