MHB How Can I Show That the Symmetric Difference of Sets is Associative?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Sets
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)I want to show that $ (A \triangle B) \triangle C=A \triangle (B \triangle C) $.

I have tried the following:

$$ x \in (A \triangle B) \triangle C \Leftrightarrow x \in (A \triangle B)\setminus C \lor x \in C \setminus (A \triangle B) \\ \Leftrightarrow (x \in A \triangle B \wedge x \notin C) \lor (x \in C \wedge x \notin A \triangle B ) \\ \Leftrightarrow (((x \in A \wedge x \notin B) \lor (x \in B \wedge x \notin A)) \wedge x \notin C)\\ \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \wedge x \notin C) \lor (x \in B \wedge x \notin A \wedge x \notin C)) \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \cup C) \lor (x \in B \wedge x \notin A \cup C))\lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) $$

How could we continue?
 
Physics news on Phys.org
If you are patient, it is possible to reduce both sides to a disjunctive normal form, i.e., a disjunction of conjunctions, where every element of a conjunction is $x\in S$ or $x\notin S$ and $S$ is one of $A$, $B$, or $C$. A similar approach is to consider eight cases where $x$ belongs or does not belong to each of $A$, $B$, and $C$, and for each of those cases calculate the truth value of both sides.

If you can rely on the fact that addition is associative in $\mathbb{Z}_2$, then you can notice that $x\in S_1\vartriangle S_2$ iff $\chi_1(x)+\chi_2(x)=1$ where $\chi_i(x)=\begin{cases}1,&x\in S_i\\0,&x\notin S_i\end{cases}$ is the characteristic function of $S_i$. Then
\[
\begin{align}
x\in (A\vartriangle B)\vartriangle C&\iff (\chi_A(x)+\chi_B(x))+\chi_C(x)=1\\
&\iff \chi_A(x)+(\chi_B(x)+\chi_C(x))=1\\&\iff x\in A\vartriangle (B\vartriangle C).
\end{align}
\]
 
evinda said:
Hello! (Wave)I want to show that $ (A \triangle B) \triangle C=A \triangle (B \triangle C) $.

I have tried the following:

$$ x \in (A \triangle B) \triangle C \Leftrightarrow x \in (A \triangle B)\setminus C \lor x \in C \setminus (A \triangle B) \\ \Leftrightarrow (x \in A \triangle B \wedge x \notin C) \lor (x \in C \wedge x \notin A \triangle B ) \\ \Leftrightarrow (((x \in A \wedge x \notin B) \lor (x \in B \wedge x \notin A)) \wedge x \notin C)\\ \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \wedge x \notin C) \lor (x \in B \wedge x \notin A \wedge x \notin C)) \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \cup C) \lor (x \in B \wedge x \notin A \cup C))\lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) $$

How could we continue?

$$(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee[x\in C((x\in A\wedge x\in B)\vee(x\notin A\wedge x\notin B))]\Leftrightarrow(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)\vee(x\in C\wedge x\notin A\wedge x\notin B)$$$$\Leftrightarrow[(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)]\vee[(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\notin A\wedge x\notin B)]\Leftrightarrow [x\in A\wedge (( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B))]\vee [x\notin A\wedge ((x\in B \wedge x\notin C)\vee(x\in C\wedge x\notin B))]$$

Can you go on from here??
 
Last edited:
solakis said:
$$(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee[x\in C((x\in A\wedge x\in B)\vee(x\notin A\wedge x\notin B))]\Leftrightarrow(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)\vee(x\in C\wedge x\notin A\wedge x\notin B)$$$$\Leftrightarrow[(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)]\vee[(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\notin A\wedge x\notin B)]\Leftrightarrow [x\in A\wedge (( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B))]\vee [x\notin A\wedge ((x\in B \wedge x\notin C)\vee(x\in C\wedge x\notin B))]$$

Can you go on from here??
In the above disjunction ,let us calculate each disjunct seperately.
So for :

$$[x\in A\wedge (( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B))]$$ we have:

$$[x\in A\wedge (F\vee ( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B)\vee F)]$$ (remember we are working in the domain of the algebra of propositions)
$$\Leftrightarrow x\in A\wedge[(x\in B\wedge x\notin B)\vee ( x\notin B\wedge x\notin C))\vee(x\in C\wedge x\in B)\vee (x\in C\wedge x\notin C)] $$

$$\Leftrightarrow x\in A\wedge[((x\in B\wedge x\notin B)\vee ( x\notin B\wedge x\notin C))\vee((x\in C\wedge x\in B)\vee (x\in C\wedge x\notin C))] $$in the $$((x\in B\wedge x\notin B)\vee ( x\notin B\wedge x\notin C))$$

get common factor $$x\notin B$$

in the $$((x\in C\wedge x\in B)\vee (x\in C\wedge x\notin C))$$

get common factor $$x\in C$$ and so we have:

$$\Leftrightarrow x\in A\wedge[x\notin B\wedge(x\in B\vee x\notin C)\vee x\in C\wedge(x\in B\vee x\notin C)]$$

$$\Leftrightarrow x\in A\wedge[(x\notin B\vee x\in C)\wedge (x\in B\vee x\notin C)] $$

And using D.Morgan we have:

$$\Leftrightarrow x\in A\wedge\neg[\neg(x\notin B\vee x\in C)\vee\neg (x\in B\vee x\notin C)] $$

$$\Leftrightarrow x\in A\wedge\neg[(x\in B\wedge x\notin C)\vee (x\notin B\wedge x\in C)] $$

$$\Leftrightarrow x\in A\wedge x\notin (B\triangle C)$$......1

And for the other disjunct $$[x\notin A\wedge ((x\in B \wedge x\notin C)\vee(x\in C\wedge x\notin B))]$$

We have:

$$\Leftrightarrow x\notin A\wedge x\in(B\triangle C)$$........2

And the disjunction of (1) and (2) is:

$$[x\in A\wedge x\notin (B\triangle C)]\vee[ x\notin A\wedge x\in(B\triangle C)]$$

$$\Leftrightarrow A\triangle(B\triangle C)$$
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...

Similar threads

Back
Top