How Can I Show That the Symmetric Difference of Sets is Associative?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Sets
Click For Summary
SUMMARY

The discussion focuses on proving the associative property of the symmetric difference of sets, specifically that \( (A \triangle B) \triangle C = A \triangle (B \triangle C) \). The participants utilize logical equivalences and characteristic functions to demonstrate this property. They explore various methods, including disjunctive normal form and case analysis, to derive the conclusion systematically. The final proof confirms that the symmetric difference operation is associative through rigorous logical deductions.

PREREQUISITES
  • Understanding of set theory, specifically symmetric difference notation \( A \triangle B \).
  • Familiarity with logical equivalences and propositional logic.
  • Knowledge of characteristic functions and their applications in set operations.
  • Experience with disjunctive normal form in logical expressions.
NEXT STEPS
  • Study the properties of symmetric difference in set theory.
  • Learn about characteristic functions and their role in set operations.
  • Explore logical equivalences and their applications in mathematical proofs.
  • Investigate disjunctive normal form and its use in simplifying logical expressions.
USEFUL FOR

Mathematicians, computer scientists, and students studying discrete mathematics or set theory who are interested in logical proofs and properties of set operations.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)I want to show that $ (A \triangle B) \triangle C=A \triangle (B \triangle C) $.

I have tried the following:

$$ x \in (A \triangle B) \triangle C \Leftrightarrow x \in (A \triangle B)\setminus C \lor x \in C \setminus (A \triangle B) \\ \Leftrightarrow (x \in A \triangle B \wedge x \notin C) \lor (x \in C \wedge x \notin A \triangle B ) \\ \Leftrightarrow (((x \in A \wedge x \notin B) \lor (x \in B \wedge x \notin A)) \wedge x \notin C)\\ \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \wedge x \notin C) \lor (x \in B \wedge x \notin A \wedge x \notin C)) \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \cup C) \lor (x \in B \wedge x \notin A \cup C))\lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) $$

How could we continue?
 
Physics news on Phys.org
If you are patient, it is possible to reduce both sides to a disjunctive normal form, i.e., a disjunction of conjunctions, where every element of a conjunction is $x\in S$ or $x\notin S$ and $S$ is one of $A$, $B$, or $C$. A similar approach is to consider eight cases where $x$ belongs or does not belong to each of $A$, $B$, and $C$, and for each of those cases calculate the truth value of both sides.

If you can rely on the fact that addition is associative in $\mathbb{Z}_2$, then you can notice that $x\in S_1\vartriangle S_2$ iff $\chi_1(x)+\chi_2(x)=1$ where $\chi_i(x)=\begin{cases}1,&x\in S_i\\0,&x\notin S_i\end{cases}$ is the characteristic function of $S_i$. Then
\[
\begin{align}
x\in (A\vartriangle B)\vartriangle C&\iff (\chi_A(x)+\chi_B(x))+\chi_C(x)=1\\
&\iff \chi_A(x)+(\chi_B(x)+\chi_C(x))=1\\&\iff x\in A\vartriangle (B\vartriangle C).
\end{align}
\]
 
evinda said:
Hello! (Wave)I want to show that $ (A \triangle B) \triangle C=A \triangle (B \triangle C) $.

I have tried the following:

$$ x \in (A \triangle B) \triangle C \Leftrightarrow x \in (A \triangle B)\setminus C \lor x \in C \setminus (A \triangle B) \\ \Leftrightarrow (x \in A \triangle B \wedge x \notin C) \lor (x \in C \wedge x \notin A \triangle B ) \\ \Leftrightarrow (((x \in A \wedge x \notin B) \lor (x \in B \wedge x \notin A)) \wedge x \notin C)\\ \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \wedge x \notin C) \lor (x \in B \wedge x \notin A \wedge x \notin C)) \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \cup C) \lor (x \in B \wedge x \notin A \cup C))\lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) $$

How could we continue?

$$(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee[x\in C((x\in A\wedge x\in B)\vee(x\notin A\wedge x\notin B))]\Leftrightarrow(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)\vee(x\in C\wedge x\notin A\wedge x\notin B)$$$$\Leftrightarrow[(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)]\vee[(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\notin A\wedge x\notin B)]\Leftrightarrow [x\in A\wedge (( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B))]\vee [x\notin A\wedge ((x\in B \wedge x\notin C)\vee(x\in C\wedge x\notin B))]$$

Can you go on from here??
 
Last edited:
solakis said:
$$(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee[x\in C((x\in A\wedge x\in B)\vee(x\notin A\wedge x\notin B))]\Leftrightarrow(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)\vee(x\in C\wedge x\notin A\wedge x\notin B)$$$$\Leftrightarrow[(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)]\vee[(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\notin A\wedge x\notin B)]\Leftrightarrow [x\in A\wedge (( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B))]\vee [x\notin A\wedge ((x\in B \wedge x\notin C)\vee(x\in C\wedge x\notin B))]$$

Can you go on from here??
In the above disjunction ,let us calculate each disjunct separately.
So for :

$$[x\in A\wedge (( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B))]$$ we have:

$$[x\in A\wedge (F\vee ( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B)\vee F)]$$ (remember we are working in the domain of the algebra of propositions)
$$\Leftrightarrow x\in A\wedge[(x\in B\wedge x\notin B)\vee ( x\notin B\wedge x\notin C))\vee(x\in C\wedge x\in B)\vee (x\in C\wedge x\notin C)] $$

$$\Leftrightarrow x\in A\wedge[((x\in B\wedge x\notin B)\vee ( x\notin B\wedge x\notin C))\vee((x\in C\wedge x\in B)\vee (x\in C\wedge x\notin C))] $$in the $$((x\in B\wedge x\notin B)\vee ( x\notin B\wedge x\notin C))$$

get common factor $$x\notin B$$

in the $$((x\in C\wedge x\in B)\vee (x\in C\wedge x\notin C))$$

get common factor $$x\in C$$ and so we have:

$$\Leftrightarrow x\in A\wedge[x\notin B\wedge(x\in B\vee x\notin C)\vee x\in C\wedge(x\in B\vee x\notin C)]$$

$$\Leftrightarrow x\in A\wedge[(x\notin B\vee x\in C)\wedge (x\in B\vee x\notin C)] $$

And using D.Morgan we have:

$$\Leftrightarrow x\in A\wedge\neg[\neg(x\notin B\vee x\in C)\vee\neg (x\in B\vee x\notin C)] $$

$$\Leftrightarrow x\in A\wedge\neg[(x\in B\wedge x\notin C)\vee (x\notin B\wedge x\in C)] $$

$$\Leftrightarrow x\in A\wedge x\notin (B\triangle C)$$......1

And for the other disjunct $$[x\notin A\wedge ((x\in B \wedge x\notin C)\vee(x\in C\wedge x\notin B))]$$

We have:

$$\Leftrightarrow x\notin A\wedge x\in(B\triangle C)$$........2

And the disjunction of (1) and (2) is:

$$[x\in A\wedge x\notin (B\triangle C)]\vee[ x\notin A\wedge x\in(B\triangle C)]$$

$$\Leftrightarrow A\triangle(B\triangle C)$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K