How Can I Show That the Symmetric Difference of Sets is Associative?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Sets
Click For Summary

Discussion Overview

The discussion revolves around demonstrating the associativity of the symmetric difference of sets, specifically the equality \( (A \triangle B) \triangle C = A \triangle (B \triangle C) \). Participants explore various methods of proof, including logical equivalences and case analysis, within the context of set theory and mathematical reasoning.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant presents a detailed logical breakdown of the symmetric difference, starting from the definition and attempting to manipulate the expressions to show the desired equality.
  • Another participant suggests reducing both sides to disjunctive normal form or considering eight cases based on membership in sets \( A \), \( B \), and \( C \) to evaluate the truth values.
  • A third participant reiterates the initial approach and requests further assistance in continuing the proof, indicating a collaborative effort to refine the argument.
  • Subsequent posts build on earlier claims, with participants calculating truth values for specific disjuncts and applying logical identities to simplify expressions.

Areas of Agreement / Disagreement

Participants do not reach a consensus on a single method of proof, as multiple approaches are discussed and explored. The discussion remains open-ended, with various techniques being proposed and refined without a definitive conclusion.

Contextual Notes

Participants rely on logical manipulations and properties of set operations, but the discussion does not resolve potential ambiguities in definitions or assumptions about the sets involved.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)I want to show that $ (A \triangle B) \triangle C=A \triangle (B \triangle C) $.

I have tried the following:

$$ x \in (A \triangle B) \triangle C \Leftrightarrow x \in (A \triangle B)\setminus C \lor x \in C \setminus (A \triangle B) \\ \Leftrightarrow (x \in A \triangle B \wedge x \notin C) \lor (x \in C \wedge x \notin A \triangle B ) \\ \Leftrightarrow (((x \in A \wedge x \notin B) \lor (x \in B \wedge x \notin A)) \wedge x \notin C)\\ \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \wedge x \notin C) \lor (x \in B \wedge x \notin A \wedge x \notin C)) \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \cup C) \lor (x \in B \wedge x \notin A \cup C))\lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) $$

How could we continue?
 
Physics news on Phys.org
If you are patient, it is possible to reduce both sides to a disjunctive normal form, i.e., a disjunction of conjunctions, where every element of a conjunction is $x\in S$ or $x\notin S$ and $S$ is one of $A$, $B$, or $C$. A similar approach is to consider eight cases where $x$ belongs or does not belong to each of $A$, $B$, and $C$, and for each of those cases calculate the truth value of both sides.

If you can rely on the fact that addition is associative in $\mathbb{Z}_2$, then you can notice that $x\in S_1\vartriangle S_2$ iff $\chi_1(x)+\chi_2(x)=1$ where $\chi_i(x)=\begin{cases}1,&x\in S_i\\0,&x\notin S_i\end{cases}$ is the characteristic function of $S_i$. Then
\[
\begin{align}
x\in (A\vartriangle B)\vartriangle C&\iff (\chi_A(x)+\chi_B(x))+\chi_C(x)=1\\
&\iff \chi_A(x)+(\chi_B(x)+\chi_C(x))=1\\&\iff x\in A\vartriangle (B\vartriangle C).
\end{align}
\]
 
evinda said:
Hello! (Wave)I want to show that $ (A \triangle B) \triangle C=A \triangle (B \triangle C) $.

I have tried the following:

$$ x \in (A \triangle B) \triangle C \Leftrightarrow x \in (A \triangle B)\setminus C \lor x \in C \setminus (A \triangle B) \\ \Leftrightarrow (x \in A \triangle B \wedge x \notin C) \lor (x \in C \wedge x \notin A \triangle B ) \\ \Leftrightarrow (((x \in A \wedge x \notin B) \lor (x \in B \wedge x \notin A)) \wedge x \notin C)\\ \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \wedge x \notin C) \lor (x \in B \wedge x \notin A \wedge x \notin C)) \lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) \\ \Leftrightarrow ((x \in A \wedge x \notin B \cup C) \lor (x \in B \wedge x \notin A \cup C))\lor (x \in C \wedge (x \in A \cap B \lor x \notin A \cup B) ) $$

How could we continue?

$$(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee[x\in C((x\in A\wedge x\in B)\vee(x\notin A\wedge x\notin B))]\Leftrightarrow(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)\vee(x\in C\wedge x\notin A\wedge x\notin B)$$$$\Leftrightarrow[(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)]\vee[(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\notin A\wedge x\notin B)]\Leftrightarrow [x\in A\wedge (( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B))]\vee [x\notin A\wedge ((x\in B \wedge x\notin C)\vee(x\in C\wedge x\notin B))]$$

Can you go on from here??
 
Last edited:
solakis said:
$$(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee[x\in C((x\in A\wedge x\in B)\vee(x\notin A\wedge x\notin B))]\Leftrightarrow(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)\vee(x\in C\wedge x\notin A\wedge x\notin B)$$$$\Leftrightarrow[(x\in A\wedge x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in A\wedge x\in B)]\vee[(x\in B \wedge x\notin A\wedge x\notin C)\vee(x\in C\wedge x\notin A\wedge x\notin B)]\Leftrightarrow [x\in A\wedge (( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B))]\vee [x\notin A\wedge ((x\in B \wedge x\notin C)\vee(x\in C\wedge x\notin B))]$$

Can you go on from here??
In the above disjunction ,let us calculate each disjunct separately.
So for :

$$[x\in A\wedge (( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B))]$$ we have:

$$[x\in A\wedge (F\vee ( x\notin B\wedge x\notin C)\vee(x\in C\wedge x\in B)\vee F)]$$ (remember we are working in the domain of the algebra of propositions)
$$\Leftrightarrow x\in A\wedge[(x\in B\wedge x\notin B)\vee ( x\notin B\wedge x\notin C))\vee(x\in C\wedge x\in B)\vee (x\in C\wedge x\notin C)] $$

$$\Leftrightarrow x\in A\wedge[((x\in B\wedge x\notin B)\vee ( x\notin B\wedge x\notin C))\vee((x\in C\wedge x\in B)\vee (x\in C\wedge x\notin C))] $$in the $$((x\in B\wedge x\notin B)\vee ( x\notin B\wedge x\notin C))$$

get common factor $$x\notin B$$

in the $$((x\in C\wedge x\in B)\vee (x\in C\wedge x\notin C))$$

get common factor $$x\in C$$ and so we have:

$$\Leftrightarrow x\in A\wedge[x\notin B\wedge(x\in B\vee x\notin C)\vee x\in C\wedge(x\in B\vee x\notin C)]$$

$$\Leftrightarrow x\in A\wedge[(x\notin B\vee x\in C)\wedge (x\in B\vee x\notin C)] $$

And using D.Morgan we have:

$$\Leftrightarrow x\in A\wedge\neg[\neg(x\notin B\vee x\in C)\vee\neg (x\in B\vee x\notin C)] $$

$$\Leftrightarrow x\in A\wedge\neg[(x\in B\wedge x\notin C)\vee (x\notin B\wedge x\in C)] $$

$$\Leftrightarrow x\in A\wedge x\notin (B\triangle C)$$......1

And for the other disjunct $$[x\notin A\wedge ((x\in B \wedge x\notin C)\vee(x\in C\wedge x\notin B))]$$

We have:

$$\Leftrightarrow x\notin A\wedge x\in(B\triangle C)$$........2

And the disjunction of (1) and (2) is:

$$[x\in A\wedge x\notin (B\triangle C)]\vee[ x\notin A\wedge x\in(B\triangle C)]$$

$$\Leftrightarrow A\triangle(B\triangle C)$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K